
1

31.01.2024

Introduction to OpenMP

NTNU-IT HPC group/Vitenskapelig databehandling

John Floan (john.floan@ntnu.no)

NRIS: www.sigma2.no

NTNU HPC www.hpc.ntnu.no/

Slides: www.hpc.ntnu.no/display/hpc/Course+materials

Name, title of the presentation

http://www.hpc.ntnu.no/

2

Plan for the day
-CPU history
-Introduction to OpenMP and parallel programming
-Tutorial 1. Parallel region. Thread creation.
 (Exercise Helloworld)
-Tutorial 2. Parallel for/do loop and Data Sharing
 (Exercise forsin and Matrix multiplication)
-Tutorial 3. Synchronization: Critical and Atomic
directives
 (Exercise Pi)
-Tutorial 4. Reduction. (Pi)
-False Sharing
-Data Sharing
-Memory allocation
-How to optimize my sequential code with OpenMP

3

CPU HISTORY

- Moore's law (1965): Number of transistores doubles every two

years.

- The clock frequency has flat out since 2005.

Clock speed

4

Performance

Higher frequency : 2 GHz gives 2 timer faster code than 1GHz (ideally)

More cores : 2 cores gives 2 time faster code than 1 core (ideally)

Fig. Laptop/pc CPU

5

What to do with your sequential code:

- Parallelizing your code (OpenMP, MPI etc)

- Use libraries that support multicore CPUs (as Lapack,

MKL etc)

- Use 4th generation programming languages as Matlab,

Scipy, R etc which have buildin libraries supporting

multicore CPUs.

6

OpenMP (Open Multi-processing).

OpenMP supports multi-platform shared-memory parallel

programming in C/C++ and Fortran.

OpenMP is a portable, scalable model with a simple and flexible

interface for developing parallel applications e.g. laptops and

supercomputers.

OpenMP is implemented in several Fortran and C/C++ compilers

as GNU, IBM, Intel, Portland, Cray, HP, Microsoft etc.

The OpenMP is a SPMD – Single Program Multiple Data.

Each thread redundantly execute the same code.

This course will have focus on OpenMP 3.x

See http://openmp.org

7

Figure 1. Intel i7 Sandy Bridge, 4 core processor with cache memory.
(L1: 64kB ~4cycles, L2: 256kB ~10cycles, L3: up to 20MB ~40cycles, RAM 32GB~120cycles)

- Each core run there own program block (thread),

and simultaneously with the other cores.

- All cores share all the memory, and with fast memory access.

- All communication between the threads are via variables (shard memory).

RAM

Core 1 Core 2

L1 cache L1 cache

Shared L2 cache

Core 3 Core 4

L1 cache L1 cache

Shared L2 cache

Shared L3 cache

8

Supercomputers, clusters and PC/laptops today have processors with

several cores, and with shared memory.

2, 4, 6 cores on PC processors are common today.

OpenMP support all this processors:

Intel Brodwell Server processor have up to 28 cores.

AMD Server processors have up to 64 cores.

Intel MIC processor have around 60 cores.

(MIC: Many Integrated Cores)

Nvidia/AMD GPUs have more than 3000 streaming cores.

9

National HPC systems:Betzy(Atos 2020)/Fram(Lenovo 2017)

Each Node Total

Cores 128 / 32 172032 / 32256

Nodes - 1344 / 1006

Memory 256GB / 64GB 336TB / 78TB

Storage - 2,5PB / 2.5PB

Flops 5.9Pflops / 1.1Pflops

Idun (Dell). Local NTNU
Each Node Total

Cores 20-48 ~2000

Nodes - ~80

Memory 128-768GB

10

Betzy HPC computer.

11

Parallel computation

Sequential computationInit Post proc1 2 p

t sequential

Init Par. comp. 1

Par. comp. 2

Par. comp. 3

Par. comp. p Post proc

Speedup
S = t sequential / t parallel

• (t-sequential: Execution time for a single core/processor

progam

• t-parallel:Execution time for the multicore/multiprocessor

program)

• Speedup for p processors or cores:

• S ≤ p.

t parallel

12

i

j

Example: Matrix calculation.

B = c * A, where A and B is mxn matrices and c is a

constant

Sequential computation:

All computation is carry out on only one processor or core.

Program

Init the matrix A

for i = 1 to m

for j = 1 to n

B(i,j) = c * A(i,j)

Benefits: OK for small computation, fast

memory access and none memory conflicts.

Drawback: Limited memory space (GB) and

sequential computations.

13

Node 1 Node 2

Node 3 Node 4

Parallel computation with MPI and cluster.

The matrix is split up and scattered to several

computers/nodes which are interconnected to each

other via IP, infinity band or other high performance

serial link.
Program:

Master: Initialize the matrix.

Master split up and spread the

matrix to all nodes.

For i = 1 to m_localnode

for j = 1 to n_localnode

localB(i,j) = c * localA(i,j)

Benefits: More memory space (TB) and parallel

computation on each node.

Drawback: Communication latency between the nodes.

i

j

14

Thread 0 in core 1

Thread 1 in core 2

Thread 2 in core 3

Thread 3 in core 4

j

i

Parallel computation with OpenMP and shared memory.

The matrix remains in the memory and each core/thread in the

processor compute its part of the matrix in parallel.

Program

Set compiler directive for a parallel

region.

Parallel for i = 1 to m

for j = 1 to n

B(i,j) = c * A(i,j)

Benefits: Parallel computation and low communication latency

between the cores.

Drawback: Small memory space (GB) and memory conflicts.

15

Tutorials

Job scripts.

The job scheduler distribute the job to the compute nodes.

The job script is a description to the scheduler and must contain

number of nodes and cores, queue, account etc.

(Ex. helloworld_c.job is for c programs and _f.job for fortran prog.)

16

Job schedulers (Slurm)

Idun, Betzy, Saga and Fram have Slurm sheduler.

Example: Job scripts for running on 2 compute nodes

Slurm (Betzy/Fram/Saga/Idun)

#!/bin/bash

#SBATCH --job-name=myjob

#SBATCH --time=0:30:0

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=1

#SBATCH -c 32

#SBATCH --account=myaccount

module purge

module load OpenMPI/1.10.2-GCC-4.9.3-2.25

srun ./my_program

See more on www.hpc.ntnu.no and www.sigma2.no

Commands:

sbatch helloworld_c.job (submitt), squeue -u username (status)

http://www.hpc.ntnu.no/

17

Editors

1. vi , vim or gvim (commands)

$vi mytextfile.txt

Write text: esc, insert button or i

Save: esc, :w

Quit: esc, :q

Save and quit: esc, :wq

2. emacs (for window users)

$emacs filename

You get a window

Problem with fonts:

emacs -fn 8x16

Note! You have to log in as (-X):

ssh -X user@idun.hpc.ntnu.no

18

Tutorials Idun. Some informations:

Login

ssh -X user@training.hpc.ntnu.no

Programs

Copy all files from /cluster/shared/floan/tutorials/ to your home folder.

Commands (mkdir:make directory, cp:copy, cd:change directory):

On your home folder:

cp -r /cluster/shared/floan/tutorials tutorials

cd tutorials

cd OpenMP_part1

(To copy a folder : cp -r myfolder1 myfolder2)

Slides:www.hpc.ntnu.no/display/hpc/Course+materials

http://www.hpc.ntnu.no/display/hpc/Course+materials

19

Compile your program

module load intel/2023b (only once)

make helloworld (or make forsin, make mult, make pi)

Run a job.

Note! Do not start a job interactively (nice ./myprogram)

sbatch helloworld_c.job

and you get a job id.

(Note! There is a job script for each tutorials)

Check the queue status:

squeue or squeue -u myusername

Cancel the job

scancel jobid

(Mac PC: If error when compiling, write: export LC_ALL=C (terminal setting(local))

20

Tutorial 1. Parallel region. Thread creation.

A parallel region is the part of the program where program is spread in to

several threads and core. Before and after a parallel region the program

run on 1 thread (master thread). It is called fork when the program go

from 1 thread to parallel region and join when the program go back to 1

thread (master thread).

Parallel Region Start (Fork)

Master thread

Thread 1

Core 1

Thread 2

Core 2

Thread 3

Core 3

Thread 4

Core 4

Parallel Region End (Join)

21

All variables declared outside a parallel region are as default shared.

Example

C Fortran
int x; integer::x

//1 thread (Master thread)

//Fork to several threads in parallel

x=0; x=0

#pragma omp parallel !$OMP PARALLEL

{

// Variabel x is shared

// between all threads.

do_something_in_parallel(x); do_something_in_parallel(x)

} !$OMP END PARALLEL

//Join to 1 thread

....

22
OpenMP
Runtime library routines and environment variable.

Important environment variable

OMP_NUM_THREADS

(export OMP_NUM_THREADS=8; ./myprogram)

This environment variable set the number of threads.

The default is number of cores.

OpenMP Runtime Library Routines

Some routines for testing and debugging.

omp_set_num_threads(n) // Set n number of threads before

// a parallel region

omp_get_num_threads()// Get the number of OpenMP

threads // inside parallel region. Return

Integer

omp_get_thread_num() // Get the current thread number.

// Return integer

omp_get_wtime() // Get wall clock time in seconds.

// Return double/real(8)

23

Exercise a. Hello world.

Modify the sequential “Hello world” program to print out

“Hello world from thread 1” , “.... thread 2”, “... thread 3” ..

C Fortran

int main() program helloworld

{

printf(“Hello world \n”); write(6,*) 'Hello world'

} end program helloworld

-Compile your program: make helloworld

-Execute the batch job:

sbatch helloworld_c.job (C) or sbatch helloworld_f.job (Fortran)

-Open the output file slurm-xxxxxxxx.out

24

Synchronization: Barrier.

C Fortran

#pragma omp barrier !$OMP BARRIER

Each thread waits until all threads arrive.

25

Master construction.

The master construct specifies a structured block that is executed by a

master thread of a team. There are no implemented barrier either on

entry to, or exit from, the master construction.

#pragma omp master !$OMP MASTER

Single construction

The single construct specifies that the associated structured block is

executed by only one of the threads in the team (not necessarily the

master thread). A barrier is implemented at the end of the single

block.

#pragma omp single !$OMP SINGLE

(Example ex_barrier.c)

26

Example Barrier and Master

C Fortran

#pragma omp parallel !$OMP PARALLEL

{

do_many_things_in_parallel(); do_many.....()

//All threads wait here until all arrives.

#pragma omp barrier !$OMP BARRIER

#pragma omp master !$OMP MASTER

{ // Only the master thread

// will call this function: post_processing ()

post_processing ();

} !$OMP END MASTER

//All threads wait here until all arrives.

#pragma omp barrier !$OMP BARRIER

do_many_other_things_in_parallel(); do_many....()

} !$OMP END PARALLEL

27

Example Barrier and Single

C Fortran
#pragma omp parallel !$OMP PARALLEL

{

do_many_things_in_parallel(); do_many.....()

//All threads wait here until all arrives.

#pragma omp barrier !$OMP BARRIER

#pragma omp single !$OMP SINGLE

{ // Only one thread

// will call this function: post_processing()

post_processing ();

} !$OMP END SINGLE

do_many_other_things_in_parallel(); do_many....()

} !$OMP END PARALLEL

29

Tutorial 2. Parallel for/do loop and data sharing.

OpenMP automatically split up the for-loop to several threads and send a

copy of the block to each core. This construction is called worksharing, and

shall be initialize as this:

C Fortran

#pragma omp parallel for !$omp parallel do

for (i=0 ; i<n ; i++) do i=0 , n

do_someting(); do_something()

end do

!$omp end parallel do

It is also allowed to initialize the for/do loop as:

#pragma omp parallel !$omp parallel

{

#pragma omp for !$omp do

for (i=0;..... do i=0, n

........

30

Example: 4 threads and n=40.

OpenMP divide the for/do loop into chunks

and the chunk size is 10 in this case.

#pragma omp parallel for !$omp paralle do

for(i=1 ; i<=n ; i++) do i=1,n

Thread 1 Thread 2 Thread 3 Thread 4

for i=1 to 10 for i=11 to 20 for i=21 to 30 for i=31 to 40

...

Note! It is important that the parallel for/do loop is iterational

independent.

That means; one iteration is independent of the iteration before.

Parallel loop iterations are not in sequential order.
#pragma omp parallel for

for (i=1 ; i<n ; i++)

X[i]=X[i-1] + X[i+1]; //This will give wrong result

31

Exercise parallel for loop forsin

Measure the execution time for the sequential code.

Modify the program “forsin” with parallel for/do-loop

Measure the execution time for the parallel program

and calculate the speedup. (Note! Try larger n)

Compile: make forsin

Run: sbatch forsin_c.job or sbatch forsin_f.job

32

Exercise parallel for loop forsin

Measure the execution time for the sequential code.

Modify the program “forsin” with parallel for/do-loop

Measure the execution time for the parallel program

and calculate the speedup. (Note! Try larger n)

Compile: make forsin

Run: sbatch forsin_c.job or sbatch forsin_f.job

33

Data sharing: Shared, private and firstprivate clause.

All variables declared outside a parallel region is shared inside the

parallel region as default.

Note! The for/do iterator (e.g. “i”) is set to private/local inside the

parallel region.

Shared

Variables are shared inside a parallel region.

Private

Variables are private inside the parallel region, but the variable has no

value.

34

Example 1. Private.

int i; integer::i,n

int n=1000; real::tmp

double tmp=0; n=1000

...... tmp=0

#pragma omp parallel for private (tmp) !$omp parallel do private(tmp)

for(i=0;i<n;i++) do i=1 , n

{ //Tmp is local

tmp = check(A[i]); tmp = check(A(i))

if (tmp > 0) if (tmp > 0)

A[i] = tmp; A(i) = tmp

end if

} end do

....... !$omp end parallel do

....

35

Firstprivate

Public variables can be set to be private inside the parallel

region and initialize its value with the corresponding value from

the master thread.

Private and firstprivate/private for arrays

Note that using arrays as firstprivate/private will copy the

whole arrays to cache multiply with 20 (Idun:one each core)

and may cause segmentation fault if the array is to big.

#pragma omp parallel for fistprivate (A,B)

36

Example 2. Firstprivate.

C Fortran

int main () program tut3ex2

{

int a=0, b=1; integer::a,b,i

int i; a = 1

b = 0

.....

#pragma omp parallel for firstprivate(a,b)

!$omp parallel do firstprivate(a,b)

for (i=0;i<16;i++) do i=1,16

{

A[i] = func(a) + func(b) A(i) = func(a) + func(b)

a++; a = a +1

b++; b = b+1

} end do

!$end omp parallel do

}//End main end program tut3ex1

37

Shared arrays

Shared arrays will be automatically load balanced to each core.

Exampel: 4 cores and n=40000
double A[n],B[n];

#pragma omp parallel for private (i,j)

for (i=0;i<n;i++)

B[i] = c * A[i]

Core 2

A [10000 .. 19999]

B [10000 .. 19999]

Core 3

A [20000 .. 29999]

B [20000 .. 29999]

Core 4

A [30000 .. 39999]

B [30000 .. 39999]

Core 1

A [00000 .. 09999]

B [00000 .. 09999]

38

Exercise b. Matrix multiplication. C=AB,

Measure the execution time for the sequential code.

Modify the program “mult” with parallel for/do-loop.

Measure the execution time again and calculate the speedup.

Compile: make mult (Try with size=1000,2000 and 3000)

39

Tutorial 3. Synchronization: Critical and Atomic directives.

The OpenMP do not protect a variable or a region as default. If several

threads shall update same variable in same time, the result can be that

one thread do not update the variable and cause wrong results of the

calculation.

Critical:

Critical provides mutual exclusion: Only one thread at time can

enter a critical region. Example:

C Fortran

#pragma omp critical !$omp critical

calculate(B,n); calculate(B,n)

Atomic:

Atomic provides mutual exclusion but only applies to the update

of a memory location. Example:

C Fortran

#pragma omp atomic !$omp atomic

x += tmp; x = x + tmp

40

Exercise.

Calculation of П (3.14159265358979...).

To calculate pi we can use this formula

= П

Create a parallel version of the pi.c or pi.f90.

-make pi

-sbatch pi_c.job (or _f.job)

Calculate the speedup S (Measure execution time before and after

including OpenMP).

Change the value of nsteps and number of threads.

න

0

1
4.0

1 + 𝑥2
𝑑𝑥

41

Tutorial 4. Reduction.

The OpenMP reduction clause:

Reduction (op:list)

A local copy of each list variable is made and initialized depending on

the operator “op” (ex “+”).

Compiler finds standard reduction expressions containing “op” and

uses them to update the local copy

Local copy are reduced into a single value and combined with the

original global value.

42

Example Average

C Fortran

double ave=0; real :: ave

double A[n]; real, dimension (n)::A

int i; integer :: i

ave = 0

put_something_in (A); put_something_in (A)

#pragma omp parallel for reduction (+:ave)

for (i=0 ; i < n ; i++) !$omp parallel do reduction (+:ave)

ave += A[i]; do i = 1, n

ave = ave / n; ave = ave + A(i)

end do

!$omp end parallel do

ave = ave / n

43

Different reduction operators:

C/C++ Fortran

+ +

* *

- -

& /

| .AND.

^ .OR.

&& .EQV.

|| .NEQV.

max iand

min ior , ieor

max and min

44

Exercise.

Modify your pi program with reduction.

Calculate the speedup. (Measure execution time before

and after including OpenMp)

45

Data sharing.

- You can change storage attributes for constructs

using following clauses as

- shared, private and firstprivate

This clauses can also be used for

parallel region, section, tasks, single

constructs.

Ex.

double Array[n];

double x=0,y=0;

double tmp;

#pragma omp parallel shared (Array) private(tmp)

firstprivate(x,y)

{ … }

46

Data sharing (continue):

Clause: Lastprivate.

The final value of a private inside a parallel loop can be

transmitted to the shared variable outside the loop.

Note that the value of sum is the value for the last iteration.

Ex. (4 threads)

int sum=0;

#pragma omp parallel for firstprivate (sum)

lastprivate(sum)

for (i=0;i<8;i++)

sum++; // sum=sum+1

printf(“sum %d\n”,sum);

The sum outside parallel region is 2.

With private and fistprivate; the sum is 0.

47

Data sharing(Continue):

The default attribute.

The default attribute can be overridden with

Default (private | shared | none)

Note that default (private) is for fortran only.

-default(none) means that you have to set all variables

shared, private or first private.

-Parallel region is shared as default

-Parallel for/do loop is shared as default (except the

iterator)

-Task is firstprivate as default.

48

Data sharing (continue):

Default attribute example:

This two examples are internal equivalent:

1) #pragma omp parallel { ... }

#pragma omp parallel default (shared) { ... }

2) int n=100;

int x,each;

#pragma omp parallel private(x,each)

{ each = x / n; }

#pragma omp parallel default(none) shared (n) private(x,each)

{ each = x / n; }

Only for Fortran:

!$omp parallel default (private) shared (n)

each = x / n

!$omp end parallel

49

Loop worksharing constructs

Schedule clause:

#pragma omp paralle for schedule (static | dynamic | guided,

chunk_size)

The schedule clause affects how loop iteration are mapped onto

threads:

- schedule (static, [chunk])

Deal out blocks of iteration of size “chunk” to each thread

Example (4 threads):

#pragma omp parallel for schedule (static,3)

for (i=0;i<10;i++)

Iteration i: Thread 0: 0 , 1 , 2

Thread 1: 3 , 4 , 5

Thread 2: 6 , 7 , 8

Thread 3: 9

The interation follow the thread order

50

schedule (dynamic,[chunk])

Each thread grabs “chunk” iterations off a queue until iteration

have been handled.

Example (4 threads):

#pragma omp parallel for schedule (dynamic,3)

for (i=0;i<10;i++)

Iteration i: Thread 0: 3 , 4 , 5

Thread 1: 0 , 1 , 2

Thread 2: 6 , 7 , 8

Thread 3: 9

The interation DO NOT follow the thread order

51

schedule(guided[,chunk])

Threads dynamically grab blocks of iterations.

The size of the block starts large and shrinks down

to size “chunk” as the calculation proceeds.

Example (4 threads):

#pragma omp parallel for schedule (guided,1)

for (i=0;i<10;i++)

Iteration i: Thread 0: 0 , 1 , 2 , 3

Thread 2: 4 , 5 , 6

Thread 1: 7 , 8

Thread 3: 9

The interation DO NOT follow the thread order

schedule(runtime)

Schedule and chunk size taken from the

OMP_SCHEDULE environment variable

52

Collapse Clause
The exampel, the i and j loops are collapsed into one loop with larger iteration space. Collapse clause set the iterators to

Exampel

#pragma omp parallel for collapse(2) private(i,j)

for (i=0;i<n;i++)

for (j=0;j<m;j++)

C[i][j] = A[i][j] * B[i][j];

53

Typical speedup performance

1. The program scale

2. Part of the program can not be/or is not

parallelized

3. Typical memory conflict (eg. use of atomic)

1

2

3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

