
14.09.22

1

Introduction to OpenMPIntroduction to OpenMP

NTNU-IT HPC group/Vitenskapelig databehandling
John Floan (john.floan@ntnu.no)

Notur: www.sigma2.no
NTNU HPC www.hpc.ntnu.no/

 Slides: www.hpc.ntnu.no/display/hpc/Course+materials

Name, title of the presentation

http://www.hpc.ntnu.no/

2

Plan for the day
 -CPU history

-Introduction to OpenMP and parallel programming

-Tutorial 1. Parallel region. Thread creation.
• (Exercise Helloworld)

-Tutorial 2. Parallel for/do loop and Data Sharing
• (Exercise forsin and Matrix multiplication)

-Tutorial 3. Synchronization: Critical and Atomic directives
• (Exercise Pi)

-Tutorial 4. Reduction. (Pi)

 -False Sharing

 -Data Sharing

-Memory allocation

 -How to optimize my sequential code with OpenMP?

3

CPU HISTORY
- Moore's law (1965): Number of transistores doubles every two

years.

- The clock frequency has flat out since 2005.

Clock speed

4

Performance

Higher frequency : 2 GHz gives 2 timer faster code than 1GHz (ideally)
More cores : 2 cores gives 2 time faster code than 1 core (ideally)

Fig. Laptop/pc CPU

5

What to do with your sequential code:

- Parallelizing your code (OpenMP, MPI etc)

- Use libraries that support multicore CPUs (as Lapack,
MKL etc)

- Use 4th generation programming languages as Matlab,
Scipy, R etc which have buildin libraries supporting
multicore CPUs.

6

OpenMP (Open Multi-processing).
OpenMP supports multi-platform shared-memory parallel
programming in C/C++ and Fortran.

OpenMP is a portable, scalable model with a simple and flexible
interface for developing parallel applications e.g. laptops and
supercomputers.

OpenMP is implemented in several Fortran and C/C++ compilers
as GNU, IBM, Intel, Portland, Cray, HP, Microsoft etc.

The OpenMP is a SPMD – Single Program Multiple Data.
Each thread redundantly execute the same code.

This course will have focus on OpenMP 3.x
See http://openmp.orgSee http://openmp.org

7

Figure 1. Intel i7 Sandy Bridge, 4 core processor with cache memory.
(L1: 64kB ~4cycles, L2: 256kB ~10cycles, L3: up to 20MB ~40cycles, RAM 32GB~120cycles)

 - Each core run there own program block (thread),
 and simultaneously with the other cores.
- All cores share all the memory, and with fast memory access.
- All communication between the threads are via variables (shard memory).

 RAM

Multi-core processor

Core 2

L1 cache L1 cache

Shared L2 cache

Core 3 Core 4

L1 cache L1 cache

Shared L2 cache

Shared L3 cache

8

Supercomputers, clusters and PC/laptops today have processors with
several cores, and with shared memory.

2, 4, 6 cores on PC processors are common today.

OpenMP support all this processors:
Intel Brodwell Server processor have up to 28 cores.
AMD Server processors have up to 64 cores.
Intel MIC processor have around 60 cores.
(MIC: Many Integrated Cores)
Nvidia/AMD GPUs have more than 3000 streaming cores.

9

National HPC systems:Betzy(Atos 2020)/Fram(Lenovo 2017)
 Each Node Total

Cores 128 / 32 172032 / 32256
Nodes - 1344 / 1006
Memory 256GB / 64GB 336TB / 78TB
Storage - 2,5PB / 2.5PB
Flops 5.9Pflops / 1.1Pflops

Idun (Dell). Local NTNU
Each Node Total

Cores 20-48 ~2000
Nodes - ~80
Memory 128-768GB

10

Betzy HPC computer.

11

Parallel computation

Sequential computationInit Post proc1 2 p

t sequential
Init Par. comp. 1

Par. comp. 2

Par. comp. 3

Par. comp. p Post proc

Speedup
S = t sequential / t parallel

(t-sequential: Execution time for a single core/processor
progam

t-parallel:Execution time for the multicore/multiprocessor
program)

Speedup for p processors or cores:
S ≤ p.

t parallel

12

i

j

Example: Matrix calculation.

B = c * A, where A and B is mxn matrices and c is a
 constant
Sequential computation:
All computation is carry out on only one processor or core.

Program
Init the matrix A
for i = 1 to m

for j = 1 to n
B(i,j) = c * A(i,j)

Benefits: OK for small computation, fast
memory access and none memory conflicts.
Drawback: Limited memory space (GB) and
sequential computations.

13

Node 1 Node 2

Node 3 Node 4

Parallel computation with MPI and cluster.
The matrix is split up and scattered to several
computers/nodes which are interconnected to each
other via IP, infinity band or other high performance
serial link.

Program:
Master: Initialize the matrix.
Master split up and spread the
matrix to all nodes.

For i = 1 to m_localnode
for j = 1 to n_localnode

localB(i,j) = c * localA(i,j)

Benefits: More memory space (TB) and parallel
computation on each node.
Drawback: Communication latency between the nodes.

i

j

14

Thread 0 in core 1

Thread 1 in core 2

Thread 2 in core 3

Thread 3 in core 4

j

i

Parallel computation with OpenMP and shared memory.
The matrix remains in the memory and each core/thread in the
processor compute its part of the matrix in parallel.

Program

Set compiler directive for a parallel
region.
 Parallel for i = 1 to m

for j = 1 to n
B(i,j) = c * A(i,j)

Benefits: Parallel computation and low communication latency
between the cores.
Drawback: Small memory space (GB) and memory conflicts.

15

Tutorials

Job scripts.

The job scheduler distribute the job to the compute nodes.

The job script is a description to the scheduler and must contain

number of nodes and cores, queue, account etc.
(Ex. helloworld_c.job is for c programs and _f.job for fortran prog.)

16

Job schedulers (Slurm and PBS Pro)

Idun, Betzy, Saga and Fram have Slurm.
Example: Job scripts for running on 2 compute nodes

Slurm (Betzy/Fram/Saga/Idun)

#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --time=0:30:0
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=1
#SBATCH -c 32
#SBATCH --account=myaccount
module purge
module load OpenMPI/1.10.2-GCC-
4.9.3-2.25
srun ./my_program

See more on www.hpc.ntnu.no and www.sigma2.no

Commands:
sbatch (submitt), squeue (status)

http://www.hpc.ntnu.no/

17

Editors
1. vi , vim or gvim (commands)
 $vi mytextfile.txt
 Write text: esc, insert button or i

Save: esc, :w
 Quit: esc, :q
 Save and quit: esc, :wq

2. emacs (for window users)
 $emacs filename
 You get a window

 Problem with fonts:
 emacs -fn 8x16
 Note! You have to log in as (-X):
 ssh -X vilje.hpc.ntnu.no

18

Tutorials Idun. Some informations:
Login

ssh -X user@training.hpc.ntnu.no

Programs
Copy all files from /cluster/home/floan/tutorials/ to your home
folder.
Commands (mkdir:make directory, cp:copy, cd:change directory):
 On your home folder:

cp -r /cluster/home/floan/tutorials tutorials
cd tutorials

 cd OpenMP_part1
 (To copy a folder : cp -r myfolder1 myfolder2)

Slides:www.hpc.ntnu.no/display/hpc/Course+materials

http://www.hpc.ntnu.no/display/hpc/Course+materials

19

Compile your program
 module load intel/2020b (only once)

make helloworld (or make forsin, make mult, make pi)

Run a job.
Note! Do not start a job interactively (nice ./myprogram)
sbatch helloworld_c.job

 and you get a job id.
(Note! There is a job script for each tutorials)

Check the queue status:
 squeue or squeue -u myusername

Cancel the job
 scancel jobid

(Mac PC: If error when compiling, write: export LC_ALL=C (terminal setting(local))

20

Tutorial 1. Parallel region. Thread creation.

A parallel region is the part of the program where program is spread in to
several threads and core. Before and after a parallel region the program
run on 1 thread (master thread). It is called fork when the program go
from 1 thread to parallel region and join when the program go back to 1
thread (master thread).

Parallel Region Start (Fork)

Master thread

Thread 1
Core 1

Thread 2
Core 2

Thread 3
Core 3

Thread 4
Core 4

Parallel Region End (Join)

21

All variables declared outside a parallel region are as default shared.

Example
C Fortran
int x; integer::x
//1 thread (Master thread)
 //Fork to several threads in parallel
x=0; x=0
#pragma omp parallel !$OMP PARALLEL
{
 // Variabel x is shared
 // between all threads.

do_something_in_parallel(x); do_something_in_parallel(x)

} !$OMP END PARALLEL
//Join to 1 thread

....

22

OpenMP
Runtime library routines and environment variable.
Important environment variable

OMP_NUM_THREADS
(export OMP_NUM_THREADS=8; ./myprogram)

This environment variable set the number of threads.
The default is number of cores.

OpenMP Runtime Library Routines
Some routines for testing and debugging.
 omp_set_num_threads(n) // Set n number of threads before

 // a parallel region
omp_get_num_threads()// Get the number of OpenMP threads

 // inside parallel region. Return Integer
omp_get_thread_num() // Get the current thread number.

// Return integer
omp_get_wtime() // Get wall clock time in seconds.

// Return double/real(8)

23

Exercise a. Hello world.
Modify the sequential “Hello world” program to print out
“Hello world from thread 1” , “.... thread 2”, “... thread 3” ..

C Fortran
int main() program helloworld
{

printf(“Hello world \n”); write(6,*) 'Hello world'
} end program helloworld
-Compile your program: make helloworld
-Execute the batch job:
 sbatch helloworld_c.sh (C) or sbatch helloworld_f.sh (Fortran)

-Open the output file helloworld_xxxxxxxx.sh.oxxxx

24

Synchronization: Barrier.
C Fortran
#pragma omp barrier !$OMP BARRIER

Each thread waits until all threads arrive.

25

Master construction.
The master construct specifies a structured block that is executed by a
master thread of a team. There are no implemented barrier either on
entry to, or exit from, the master construction.

#pragma omp master !$OMP MASTER

Single construction
The single construct specifies that the associated structured block is
executed by only one of the threads in the team (not necessarily the
master thread). A barrier is implemented at the end of the single
block.

#pragma omp single !$OMP SINGLE
(Example ex_barrier.c)

26

Example Barrier and Master
C Fortran
#pragma omp parallel !$OMP PARALLEL
{

do_many_things_in_parallel(); do_many.....()
//All threads wait here until all arrives.
#pragma omp barrier !$OMP BARRIER
#pragma omp master !$OMP MASTER
{ // Only the master thread

// will call this function: post_processing ()
post_processing ();

} !$OMP END MASTER
//All threads wait here until all arrives.
#pragma omp barrier !$OMP BARRIER
do_many_other_things_in_parallel(); do_many....()

} !$OMP END PARALLEL

27

Example Barrier and Single
C Fortran
#pragma omp parallel !$OMP PARALLEL
{

do_many_things_in_parallel(); do_many.....()
//All threads wait here until all arrives.
#pragma omp barrier !$OMP BARRIER

#pragma omp single !$OMP SINGLE
{ // Only one thread

// will call this function: post_processing()
post_processing ();

} !$OMP END SINGLE

do_many_other_things_in_parallel(); do_many....()
} !$OMP END PARALLEL

28

Exercise B. Use OpenMP runtime library routines and
 Synchronization.

Modify your program Hello World to print out number of threads

and thread no like this:.

 “Number of threads: 16” (Always first)

 “Hello world from thread 1”

29

Tutorial 2. Parallel for/do loop and data sharing.Tutorial 2. Parallel for/do loop and data sharing.
OpenMP automatically split up the for-loop to several threads and send a
copy of the block to each core. This construction is called worksharing, and
shall be initialize as this:

C Fortran
#pragma omp parallel for !$omp parallel do

for (i=0 ; i<n ; i++) do i=0 , n
 do_someting(); do_something()

end do
!$omp end parallel do

It is also allowed to initialize the for/do loop as:
#pragma omp parallel !$omp parallel
{
#pragma omp for !$omp do

for (i=0;..... do i=0, n
........

30

Example: 4 threads and n=40.
OpenMP divide the for/do loop into chunks
and the chunk size is 10 in this case.

#pragma omp parallel for !$omp paralle do
for(i=1 ; i<=n ; i++) do i=1,n

Thread 1 Thread 2 Thread 3 Thread 4
for i=1 to 10 for i=11 to 20 for i=21 to 30 for i=31 to 40

...
Note! It is important that the parallel for/do loop is iterational
independent.
That means; one iteration is independent of the iteration before.
Parallel loop iterations are not in sequential order.
#pragma omp parallel for
 for (i=1 ; i<n ; i++)
 X[i]=X[i-1] + X[i+1]; //This will give wrong result

31

Exercise parallel for loop forsin
 Measure the execution time for the sequential code.
 Modify the program “forsin”” with parallel for/do-loop
 Measure the execution time for the parallel program
 and calculate the speedup. (Note! Try larger n)

 Compile: make forsin

Run: sbatch forsin_c.job or sbatch forsin_f.job

32

Data sharing: Shared, private and firstprivate clause.

All variables declared outside a parallel region is shared inside the
parallel region as default.

Note! The for/do iterator (e.g. “i”) is set to private/local inside the
parallel region.

Shared
Variables are shared inside a parallel region.

Private
Variables are private inside the parallel region, but the variable has no
value.

33

Example 1. Private.

 int i; integer::i,n
 int n=1000; real::tmp
 double tmp=0; n=1000
 tmp=0
#pragma omp parallel for private (tmp) !$omp parallel do private(tmp)
 for(i=0;i<n;i++) do i=1 , n
 { //Tmp is local

tmp = check(A[i]); tmp = check(A(i))
if (tmp > 0) if (tmp > 0)
 A[i] = tmp; A(i) = tmp

 end if
 } end do
 !$omp end parallel do

34

Firstprivate
Public variables can be set to be private inside the parallel
region and initialize its value with the corresponding value
from the master thread.

Private and firstprivate/private for arrays

Note that using arrays as firstprivate/private will copy the
whole arrays to cache multiply with 20 (Idun:one each core)
and may cause segmentation fault if the array is to big.

#pragma omp parallel for fistprivate (A,B)

35

Example 2. Firstprivate.
C Fortran
int main () program tut3ex2
{

int a=0, b=1; integer::a,b,i
int i; a = 1

b = 0
.....

#pragma omp parallel for firstprivate(a,b)
!$omp parallel do firstprivate(a,b)

for (i=0;i<16;i++) do i=1,16
{

A[i] = func(a) + func(b) A(i) = func(a) + func(b)
a++; a = a +1
b++; b = b+1

} end do
!$end omp parallel do

}//End main end program tut3ex1

36

Shared arrays

Shared arrays will be automatically load balanced to
each core.
Exampel: 4 cores and n=40000
double A[n],B[n];
#pragma omp parallel for private (i,j)
for (i=0;i<n;i++)
 B[i] = c * A[i]

Core 2
A [10000 .. 19999]
B [10000 .. 19999]

Core 3
A [20000 .. 29999]
B [20000 .. 29999]

Core 4
A [30000 .. 39999]
B [30000 .. 39999]

Core 1
A [00000 .. 09999]
B [00000 .. 09999]

37

Exercise b. Matrix multiplication. C=AB,
 Measure the execution time for the sequential code.
 Modify the program “mult”mult” with parallel for/do-loop.
 Measure the execution time again and calculate the speedup.
 Compile: make mult (Try with size=1000,2000 and 3000)

38

Tutorial 3. Synchronization: Critical and Atomic directives.
The OpenMP do not protect a variable or a region as default. If several
threads shall update same variable in same time, the result can be that
one thread do not update the variable and cause wrong results of the
calculation.
Critical:

Critical provides mutual exclusion: Only one thread at time can
enter a critical region. Example:

C Fortran
#pragma omp critical !$omp critical
 calculate(B,n); calculate(B,n)

Atomic:
Atomic provides mutual exclusion but only applies to the update
of a memory location. Example:

C Fortran
#pragma omp atomic !$omp atomic
x += tmp; x = x + tmp

39

Exercise.

Calculation of П (3.14159265358979...).
To calculate pi we can use this formula

= П

Create a parallel version of the pi.c or pi.f90.
-make pi

Calculate the speedup S (Measure execution time before and after
including OpenMP).

 Change the value of nsteps and number of threads.

∫
0

1
4.0

1+ x2 dx

40

Tutorial 4. Reduction.

The OpenMP reduction clause:
Reduction (op:list)

A local copy of each list variable is made and initialized depending on
the operator “op” (ex “+”).

Compiler finds standard reduction expressions containing “op” and
uses them to update the local copy

Local copy are reduced into a single value and combined with the
original global value.

41

Example Average

C Fortran
double ave=0; real :: ave
double A[n]; real, dimension (n)::A
int i; integer :: i

 ave = 0
put_something_in (A); put_something_in (A)
#pragma omp parallel for reduction (+:ave)
for (i=0 ; i < n ; i++) !$omp parallel do reduction (+:ave)

 ave += A[i]; do i = 1, n
ave = ave / n; ave = ave + A(i)

 end do
 !$omp end parallel do
 ave = ave / n

42

Different reduction operators:

C/C++ Fortran
+ +
* *
- -
& /
| .AND.
^ .OR.
&& .EQV.

 || .NEQV.
 max iand
 min ior , ieor

 max and min

43

Exercise.

Modify your pi program with reduction.

Calculate the speedup. (Measure execution time before
and after including OpenMp)

44

Data sharing.

- You can change storage attributes for constructs

 using following clauses as

 - shared, private and firstprivate

This clauses can also be used for
parallel region, section, tasks, single

constructs.

Ex.

 double Array[n];
double x=0,y=0;

double tmp;

#pragma omp parallel shared (Array) private(tmp)
firstprivate(x,y)

{ … }

45

Data sharing (continue):

Clause: Lastprivate.
The final value of a private inside a parallel loop can be

transmitted to the shared variable outside the loop.

Note that the value of sum is the value for the last iteration.

Ex. (4 threads)
int sum=0;

#pragma omp parallel for firstprivate (sum) lastprivate(sum)

for (i=0;i<8;i++)

 sum++; // sum=sum+1

printf(“sum %d\n”,sum);

The sum outside parallel region is 2.

With private and fistprivate; the sum is 0.

46

Data sharing(Continue):

The default attribute.

The default attribute can be overridden with

 Default (private | shared | none)
Note that default (private) is for fortran only.

-default(none) means that you have to set all variables
shared, private or first private.

-Parallel region is shared as default

-Parallel for/do loop is shared as default (except the
iterator)

-Task is firstprivate as default.

47

Data sharing (continue):

Default attribute example:
This two examples are internal equivalent:

1) #pragma omp parallel { ... }

 #pragma omp parallel default (shared) { ... }

2) int n=100;

 int x,each;

 #pragma omp parallel private(x,each)

 { each = x / n; }

 #pragma omp parallel default(none) shared (n) private(x,each)

 { each = x / n; }

Only for Fortran:

 !$omp parallel default (private) shared (n)

 each = x / n

 !$omp end parallel

48

Loop worksharing constructs

Schedule clause:
#pragma omp paralle for schedule (static | dynamic | guided,

chunk_size)

The schedule clause affects how loop iteration are mapped onto
threads:

- schedule (static, [chunk])

 Deal out blocks of iteration of size “chunk” to each thread

 Example (4 threads):

 #pragma omp parallel for schedule (static,3)

 for (i=0;i<10;i++)

 Iteration i: Thread 0: 0 , 1 , 2

 Thread 1: 3 , 4 , 5

 Thread 2: 6 , 7 , 8

 Thread 3: 9

 The interation follow the thread order

49

schedule (dynamic,[chunk])

 Each thread grabs “chunk” iterations off a queue until iteration
have been handled.

 Example (4 threads):

 #pragma omp parallel for schedule (dynamic,3)

 for (i=0;i<10;i++)

 Iteration i: Thread 0: 3 , 4 , 5

 Thread 1: 0 , 1 , 2

 Thread 2: 6 , 7 , 8

 Thread 3: 9

 The interation DO NOT follow the thread order

50

schedule(guided[,chunk])

 Threads dynamically grab blocks of iterations.

 The size of the block starts large and shrinks down

 to size “chunk” as the calculation proceeds.

 Example (4 threads):

 #pragma omp parallel for schedule (guided,1)

 for (i=0;i<10;i++)

 Iteration i: Thread 0: 0 , 1 , 2 , 3

 Thread 2: 4 , 5 , 6

 Thread 1: 7 , 8

 Thread 3: 9

 The interation DO NOT follow the thread order

schedule(runtime)
Schedule and chunk size taken from the

 OMP_SCHEDULE environment variable

51

Collapse Clause
The exampel, the i and j loops are collapsed into one loop with larger
iteration space. Collapse clause set the iterators to private.

Exampel

#pragma omp parallel for collapse(2) private(i,j)
for (i=0;i<n;i++)
 for (j=0;j<m;j++)

C[i][j] = A[i][j] * B[i][j];

52

Typical speedup performance
1. The program scale
2. Part of the program can not be/or is not
 parallelized
3. Typical memory conflict (eg. use of atomic)

1

2

3

	Lysbilde 1
	Lysbilde 2
	Lysbilde 3
	Lysbilde 4
	Lysbilde 5
	Lysbilde 6
	Lysbilde 7
	Lysbilde 8
	Lysbilde 9
	Lysbilde 10
	Lysbilde 11
	Lysbilde 12
	Lysbilde 13
	Lysbilde 14
	Lysbilde 15
	Lysbilde 16
	Lysbilde 17
	Lysbilde 18
	Lysbilde 19
	Lysbilde 20
	Lysbilde 21
	Lysbilde 22
	Lysbilde 23
	Lysbilde 24
	Lysbilde 25
	Lysbilde 26
	Lysbilde 27
	Lysbilde 28
	Lysbilde 29
	Lysbilde 30
	Lysbilde 31
	Lysbilde 32
	Lysbilde 33
	Lysbilde 34
	Lysbilde 35
	Lysbilde 36
	Lysbilde 37
	Lysbilde 38
	Lysbilde 39
	Lysbilde 40
	Lysbilde 41
	Lysbilde 42
	Lysbilde 43
	Lysbilde 44
	Lysbilde 45
	Lysbilde 46
	Lysbilde 47
	Lysbilde 48
	Lysbilde 49
	Lysbilde 50
	Lysbilde 51
	Lysbilde 52

