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Introduction
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The Examples

• No exercises, but 7 working examples are explained
– The last 6 are larger examples

• On Idun or Saga:
– cp -r /cluster/home/hrn/Kurs/mpi .
– module load foss/2021b
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Basic MPI Programming
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MPI Programs in C

• A C program
– Has a main() function
– Includes stdio.h, string.h, etc.

• Need to include mpi.h header file
• Indentifiers defined by MPI start with “MPI_”

• First letter following underscore is uppercase
– For function names and MPI-defined types
– Helps to avoid confusion
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MPI Programs in Fortran

• include 'mpif.h'
– No argument checking! Don't use it.

• use mpi
– Provide explicit interfaces for all MPI routines → 

compile time argument checking

• use mpi_f08
– Fully Fortran 2008 compatible definition of all MPI 

routines
– New syntax TYPE(*), DIMENSION(...) to define choice 

buffers in a standardized way
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Identifying MPI Processes

• Common practice is to identify processes by non-
negative integer ranks

• p processes are numbered 0, 1, 2, …, p-1

• This can be:
– p processes distributed over p processors (“physical 

parallelism”)
– p processes running time-multiplexed on a single 

processor (“logical parallelism”)
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Example 1: Hello, World!

• Compile the code:
–

• Edit the job script:

• Run the job:

$ vim run.slurm (change <ACCOUNT>)

$ cd examples/ex1
$ make
mpicc -O2 mpi_hello.c -o mpi_hello

$ sbatch run.slurm
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MPI Start and End

• MPI_Init()
– Tells MPI to do all the necessary setup

• MPI_Finalize()
– Tells MPI we're done, so clean up anything allocated

Pointers to the arguments
to main: argc & arv

int MPI_Init(
int*    argc_p
char*** argv_p);

int MPI_Finalize(void);
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Basic Outline

...
#include <mpi.h>
...
int main(int argc, char* argv[]) {
  ...
  /* No MPI calls before this */
  MPI_Init(&argc, &argv);
  ...
  MPI_Finalize();
  /* No MPI calls after this */
  ...
  return 0;
}
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Communicators

• A collection of processes that can send messages to 
each other

• MPI_Init() defines a communicator that consists of all 
the processes created when the program is started
– MPI_COMM_WORLD
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Communicators

int MPI_Comm_size(
MPI_Comm comm /* in  */,
int* size /* out */);

int MPI_Comm_rank(
MPI_Comm comm /* in  */
int* rank /* out */);

number of processes in the communicator

my rank
(the process making this call)
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Communication

int MPI_Send(
void*  buf /* in */,
int  count /* in */,
MPI_Datatype datatype /* in */,
int  dest /* in */,
int  tag /* in */,
MPI_Comm  communicator /* in */);

number of elements in
the send buffer
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Data Types
MPI datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG signed long long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED
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Communication

int MPI_Recv(
void*  buf /* out */,
int  count /* in  */,
MPI_Datatype datatype /* in  */,
int  source /* in  */,
int  tag /* in  */,
MPI_Comm  communicator /* in  */,
MPI_Status*  status /* out */);

max. number of elements
to receive
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Message Matching

• Process q calls MPI_Send()

• Process r calls MPI_Recv()

MPI_Send(send_buf, send_count, send_type, dest,
 send_tag, send_comm);

MPI_Recv(recv_buf, recv_count, recv_type, src,
 recv_tag, recv_comm, &status);

r

q
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Receiving Messages

• A receiver can get a message without knowing:
– the amount of data in the message,
– the sender of the message

• MPI_ANY_SOURCE

– or the tag of the message
• MPI_ANY_TAG
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The Status Argument

• If MPI_ANY_SOURCE or MPI_ANY_TAG have been 
used, you can get help from MPI_Status

MPI_Recv(buf, count, datatype, src
 tag, comm, &status);

MPI_Status status;

status.MPI_SOURCE
status.MPI_TAG
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How much data am I receiving?

int MPI_Probe(
int source /* in */,
int tag /* in */,
MPI_Comm comm /* in */
MPI_Status* status /* out */);

int MPI_Get_count(
MPI_Status*  status /* in  */,
MPI_Datatype datatype /* in  */,
int*  count /* out */);
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Issues with Send and Receive

• Exact behavior is determined by the MPI implementation

• MPI_Send() is blocking as defined in the standard, but is 
non-blocking up to a certain message size in most 
implementations
– MPI_Ssend() might be used to force blocking untill a 

receive is posted
– MPI_Bsend() can be used with a user defined send buffer - 

then always non-blocking

• MPI_Recv() always blocks until a matching message is 
received
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Issues with Send and Receive

• AND, …
– MPI programs will easily hang! 

• A receive without corresponding send
• A send without corresponding receive
• Or deadlock

– Circular waiting
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Non-Blocking Communication
int MPI_Isend(void* buffer, int count, MPI_Datatype

datatype, int destination, int tag, MPI_Comm comm,
MPI_Request* request);

int MPI_Irecv(void* buffer, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request* request);

int MPI_Wait(MPI_Request* request, MPI_Status* status);

int MPI_Waitall(int array_size,
MPI_Request requests[], MPI_Status statuses[]);

I = Immediate
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Non-Blocking Communication

• Immediate-mode MPI_Isend() and MPI_Irecv() only 
start the data copy operation

• MPI_Wait() and MPI_Waitall() are used to complete 
the operations

• Useful in complicated send-receive situations (e.g. 
2D grid of processes)

• Calculations can take place between those two calls
– Difficult to make good use of
– Communication and calculation at the same time is 

more efficient
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Global Reduction

• op determines which global reduction to perform
• Predefined reductions for the most used types, like 

MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, etc.
• Also possible to specify user defined reduction 

operations with MPI_Op_create()
• MPI_IN_PLACE specified for sendbuf at rank root, 

makes the receive buffer a send-and-receive buffer

int MPI_Reduce(void *sendbuf, void *recvbuf, int count
MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm);
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Broadcast

• Broadcasts a message from the process with rank 
root to all other processes of the communicator

int MPI_Bcast(void *buffer, int count, MPI_Datatype
Datatype, int root, MPI_Comm comm);
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Scatter and gather

• Routines to spread and collect data from or to root
• MPI_Scatter: if root sends 100 numbers to 10 

processes, then sendbuf on root must be 1000 long
• MPI_Gather: if root receives 100 numbers from 10 

processes, then recvbuf on root must be 1000 long

int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm);

int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm);
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Allreduce, allgather and more

• MPI_Allreduce() and MPI_Allgather() are identical to 
their siblings, except that the end result is made 
available to all ranks

• As if the operation was followed by a broadcast

• There are also more elaborate combined all-to-all 
scatter-gather functions, like MPI_Alltoall(), 
MPI_Alltoallv() and MPI_Alltoallw()

• Use the man pages to get more information, e.g.: 
$ man MPI_Allreduce
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Examples
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Writing Larger MPI Programs

• Question:
– Now that we can write “Hello World!” MPI programs, 

then what do we need in order to write larger MPI 
programs for scientific projects?

• Answer:
– Parallel algorithms
– Data must be distributed to all proceses so that they all 

are kept busy during the entire execution of MPI 
programs
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Data Distribution

• The majority of time is usually spent in DO/FOR 
loops

• Multiple data distribution methods:
– Block distribution

• Column wise
• Row wise
• In both dimensions

– Cyclic distribution
– Master-worker

• 6 examples
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2. Finite Difference Method

• Wikipedia:
“Numerical methods for solving differential equations 
by approximating them with difference equations”

• Only a skeleton 2D FDM program is shown here
• Coefficients and the enclosing loop are omitted
• Data dependencies exist in both dimensions
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The Sequential Algorithm
PROGRAM main
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m=6, n=9)
DIMENSION a(m,n), b(m,n)
DO j=1, n
  DO i=1, m
    a(i,j) = i + 10.0 * j
  ENDDO
ENDDO
DO j=2, n-1
  DO i=2, m-1
    b(i,j) = a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j)
  ENDDO
ENDDO
END
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Column-Wise Block Distribution
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Column-Wise Block Distribution

• We must distribute a 2D matrix onto the processes

• Fortran stores arrays in column-major order

• Boundary elements between processes are 
contiguous in memory

• There are no problems with using MPI_SEND and 
MPI_RECV
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Example 2

ex2/fdm1.f90
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Row-Wise Block Distribution
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Row-Wise Block Distribution

• Fortran stores arrays in column-major order

• Boundary elements between processes are not 
contiguous in memory

• Boundary elements can be copied by:
– Using derived data types
– Writing code for packing data, sending/receiving it, and 

then unpacking it
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Example 2

ex2/fdm2.f90
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Block Distribution in Both Dim. (1)

• The amount of data transferred might be minimized
– Depends upon the matrix size and the number of 

processes

• A process grid itable is prepared for looking up 
processes quickly
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Block Distribution in Both Dim. (1)
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Example 2

ex2/fdm3.f90
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Block Distribution in Both Dim. (2)

• The corner elements are now included

• The data dependencies are therefore more complex
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The Sequential Algorithm
PROGRAM main
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m=12, n=9)
DIMENSION a(m,n), b(m,n)
DO j=1, n
  DO i=1, m
    a(i,j) = i + 10.0 * j
  ENDDO
ENDDO
DO j=2, n-1
  DO i=2, m-1
    b(i,j) = a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j) + &
             a(i-1,j-1) + a(i+1,j-1) + a(i-1,j+1) +a(i+1,j+1)
  ENDDO
ENDDO
END
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The Data Dependency
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Example 2

ex2/fdm4.f90
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3. Finite Element Method

• Wikipedia:
“Numerical technique for finding approximate solutions 
to boundary value problems for partial differential 
equations”

• A more complete example that produces a result
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Finite Element Method



  

52

The Sequential Algorithm
PARAMETER(iemax=12, inmax=21)
REAL*8 ve(iemax), vn(inmax)
INTEGER index(4,iemax)
...
DO ie=1, iemax
  ve(ie) = ie * 10.0
ENDDO
DO in=1, inmax
  vn(in) = in * 100.0
ENDDO
DO itime=1, 10
  DO ie=1, iemax
    DO j=1, 4
      vn(index(j,ie)) = 
vn(index(j,ie)) + ve(ie)
    ENDDO
  ENDDO

  DO in = 1, inmax
    vn(in) = vn(in) * 0.25
  ENDDO
  DO ie = 1, iemax
    DO j = 1, 4
      ve(ie) = ve(ie) + vn(index(j,ie))
    ENDDO
  ENDDO
  DO ie = 1, iemax
    ve(ie) = ve(ie) * 0.25
  ENDDO
ENDDO
PRINT *,’Result’,vn,ve
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Distributing the Data
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Differences from IBM version

• 2D enumeration (row, column) is used instead of 1D 
enumeration

• The amount of memory allocated by each process is 
minimized

• A node column is sent to the right

• An element column is sent to the left
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Example 3

ex3/main.f90 and ex3/grid.f90
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4. LU Factorization

• Wikipedia:
– “Factors a matrix as the product of a lower triangular 

matrix and an upper triangular matrix”
– Used for solving square systems of linear equations: 

Ax = b

• ScaLAPACK and Intel's MKL library have optimized 
subroutines for this (outside the scope of this course)

• Pivoting and loop-unrolling is not considered
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The Sequential Algorithm

PROGRAM main
PARAMETER (n = ...)
REAL a(n,n), b(n)
...
! LU factorization
DO k = 1, n-1
  DO i = k+1, n
    a(i,k) = a(i,k) / a(k,k)
  ENDDO
  DO j = k+1, n
    DO i = k+1, n
      a(i,j) = a(i,j)-a(i,k)*a(k,j)
    ENDDO
  ENDDO
ENDDO

! Forward elimination
DO i = 2, n
  DO j = 1, i - 1
    b(i) = b(i) - a(i,j)*b(j)
  ENDDO
ENDDO
! Backward substitution
DO i = n, 1, -1
  DO j = i + 1, n
    b(i) = b(i) - a(i,j)*b(j)
  ENDDO
  b(i) = b(i) / a(i,i)
ENDDO
...
END
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Cyclic Data Distributing
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Example 4

ex4/lu.f90
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5. The Monte Carlo Method

• Wikipedia:
“A broad class of computational algorithms that rely on 
repeated random sampling to obtain numerical results”

• A random walk in 2D
• 100,000 particles
• 10 steps
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A Sample Trajectory
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The Sequential Algorithm

PROGRAM main
PARAMETER (n=100000)
INTEGER itotal(0:9)
REAL seed
pi = 3.1415926
DO i = 0, 9
  itotal(i) = 0
ENDDO
seed = 0.5
CALL srand(seed)

DO i = 1, n
  x = 0.0
  y = 0.0
  DO istep = 1, 10
    angle = 2.0 * pi * rand()
    x = x + cos(angle)
    y = y + sin(angle)
  ENDDO
  itemp = sqrt(x**2 + y**2)
  itotal(itemp) = itotal(itemp) + 1
ENDDO
PRINT *,’total =’,itotal
END
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Example 5

ex5/mc.f90
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6. Molecular Dynamics

• Wikipedia:
“a computer simulation of physical movements of 
atoms and molecules”

• N particles interact in 1 dimension
• The force on particle i from particle j is given by

f
ij
 = 1/(x

j
-x

i
)

• The law of action and reaction applies:
f
ij
 = -f

ji
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Forces in 1D
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Forces Acting on 7 Particles
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The Sequential Algorithm
PARAMETER (n = ...)
REAL f(n), x(n)
...
DO itime = 1, 100
  DO i = 1, n
    f(i) = 0.0
  ENDDO
  DO i = 1, n-1
    DO j = i+1, n
      fij = 1.0 / (x(j)-x(i))
      f(i) = f(i) + fij
      f(j) = f(j) - fij
    ENDDO
  ENDDO
  DO i = 1, n
    x(i) = x(i) + f(i)
  ENDDO
ENDDO
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Two Parallelisation Methods

• Most of the time is spent in the calculation loop:

• Two parallelization methods:
– Cyclic distribution of the outer loop
– Cyclic distribution of the inner loop

DO i = 1, n-1
  DO j = i+1, n
    fij = 1.0/(x(j) - x(i))
    f(i) = f(i) + fij
    f(j) = f(j) - fij
  ENDDO
ENDDO
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Example 6

ex6/md1.f90
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Example 6

ex6/md2.f90
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7. MPMD Models

• Wikipedia:
“Multiple Program, Multiple Data: multiple autonomous 
processors simultaneously operating at least 2 
independent programs”

• Different programs run in parallel and communicate 
with each other
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An example
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Master/Worker Programs

• The master coordinates the execution of all the other 
processes

• The master has a list of jobs that must be processed

• Suitable if:
– The processing time varies greatly from job to job
– Neither block nor cyclic distribution gives a good load 

balancing
– A heterogeneous environment where the performance 

of the machines is not uniform
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Example 7

ex7/master.f90 and ex7/worker.f90
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More Information

• Examples are based on:
– IBM Redbook: “RS/6000 SP: Practical MPI 

Programming”

• Documentation:
– https://www.sigma2.no/documentation
– http://www.hpc.ntnu.no/

https://www.sigma2.no/documentation
http://www.hpc.ntnu.no/
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