

1

MPI Programming

Henrik R. Nagel
IT Development Section

IT Division

2

Outline

• Introduction

• Basic MPI programming

• Examples
– Finite Difference Method
– Finite Element Method
– LU Factorization
– Monte Carlo Method
– Molecular Dynamics
– MPMD Models

3

Introduction

4

Acknowledgments

• Thanks to Professor Lasse Natvig and Associate
Professor Jørn Amundsen from IDI, NTNU for
allowing me to copy from their “Parallel
Programming” lecture slides

• Thanks to IBM for allowing me to copy from their MPI
redbook “RS/6000 SP: Practical MPI Programming”

5

The Examples

• No exercises, but 7 working examples are explained
– The last 6 are larger examples

• On Idun or Saga:
– cp -r /cluster/home/hrn/Kurs/mpi .
– module load foss/2021b

6

Basic MPI Programming

7

MPI Programs in C

• A C program
– Has a main() function
– Includes stdio.h, string.h, etc.

• Need to include mpi.h header file
• Indentifiers defined by MPI start with “MPI_”

• First letter following underscore is uppercase
– For function names and MPI-defined types
– Helps to avoid confusion

8

MPI Programs in Fortran

• include 'mpif.h'
– No argument checking! Don't use it.

• use mpi
– Provide explicit interfaces for all MPI routines →

compile time argument checking

• use mpi_f08
– Fully Fortran 2008 compatible definition of all MPI

routines
– New syntax TYPE(*), DIMENSION(...) to define choice

buffers in a standardized way

9

Identifying MPI Processes

• Common practice is to identify processes by non-
negative integer ranks

• p processes are numbered 0, 1, 2, …, p-1

• This can be:
– p processes distributed over p processors (“physical

parallelism”)
– p processes running time-multiplexed on a single

processor (“logical parallelism”)

10

Example 1: Hello, World!

• Compile the code:
–

• Edit the job script:

• Run the job:

$ vim run.slurm (change <ACCOUNT>)

$ cd examples/ex1
$ make
mpicc -O2 mpi_hello.c -o mpi_hello

$ sbatch run.slurm

11

MPI Start and End

• MPI_Init()
– Tells MPI to do all the necessary setup

• MPI_Finalize()
– Tells MPI we're done, so clean up anything allocated

Pointers to the arguments
to main: argc & arv

int MPI_Init(
int* argc_p
char*** argv_p);

int MPI_Finalize(void);

12

Basic Outline

...
#include <mpi.h>
...
int main(int argc, char* argv[]) {
 ...
 /* No MPI calls before this */
 MPI_Init(&argc, &argv);
 ...
 MPI_Finalize();
 /* No MPI calls after this */
 ...
 return 0;
}

13

Communicators

• A collection of processes that can send messages to
each other

• MPI_Init() defines a communicator that consists of all
the processes created when the program is started
– MPI_COMM_WORLD

14

Communicators

int MPI_Comm_size(
MPI_Comm comm /* in */,
int* size /* out */);

int MPI_Comm_rank(
MPI_Comm comm /* in */
int* rank /* out */);

number of processes in the communicator

my rank
(the process making this call)

15

Communication

int MPI_Send(
void* buf /* in */,
int count /* in */,
MPI_Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI_Comm communicator /* in */);

number of elements in
the send buffer

16

Data Types
MPI datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG signed long long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

17

Communication

int MPI_Recv(
void* buf /* out */,
int count /* in */,
MPI_Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI_Comm communicator /* in */,
MPI_Status* status /* out */);

max. number of elements
to receive

18

Message Matching

• Process q calls MPI_Send()

• Process r calls MPI_Recv()

MPI_Send(send_buf, send_count, send_type, dest,
 send_tag, send_comm);

MPI_Recv(recv_buf, recv_count, recv_type, src,
 recv_tag, recv_comm, &status);

r

q

19

Receiving Messages

• A receiver can get a message without knowing:
– the amount of data in the message,
– the sender of the message

• MPI_ANY_SOURCE

– or the tag of the message
• MPI_ANY_TAG

20

The Status Argument

• If MPI_ANY_SOURCE or MPI_ANY_TAG have been
used, you can get help from MPI_Status

MPI_Recv(buf, count, datatype, src
 tag, comm, &status);

MPI_Status status;

status.MPI_SOURCE
status.MPI_TAG

21

How much data am I receiving?

int MPI_Probe(
int source /* in */,
int tag /* in */,
MPI_Comm comm /* in */
MPI_Status* status /* out */);

int MPI_Get_count(
MPI_Status* status /* in */,
MPI_Datatype datatype /* in */,
int* count /* out */);

22

Issues with Send and Receive

• Exact behavior is determined by the MPI implementation

• MPI_Send() is blocking as defined in the standard, but is
non-blocking up to a certain message size in most
implementations
– MPI_Ssend() might be used to force blocking untill a

receive is posted
– MPI_Bsend() can be used with a user defined send buffer -

then always non-blocking

• MPI_Recv() always blocks until a matching message is
received

23

Issues with Send and Receive

• AND, …
– MPI programs will easily hang!

• A receive without corresponding send
• A send without corresponding receive
• Or deadlock

– Circular waiting

24

Non-Blocking Communication
int MPI_Isend(void* buffer, int count, MPI_Datatype

datatype, int destination, int tag, MPI_Comm comm,
MPI_Request* request);

int MPI_Irecv(void* buffer, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request* request);

int MPI_Wait(MPI_Request* request, MPI_Status* status);

int MPI_Waitall(int array_size,
MPI_Request requests[], MPI_Status statuses[]);

I = Immediate

25

Non-Blocking Communication

• Immediate-mode MPI_Isend() and MPI_Irecv() only
start the data copy operation

• MPI_Wait() and MPI_Waitall() are used to complete
the operations

• Useful in complicated send-receive situations (e.g.
2D grid of processes)

• Calculations can take place between those two calls
– Difficult to make good use of
– Communication and calculation at the same time is

more efficient

26

Global Reduction

• op determines which global reduction to perform
• Predefined reductions for the most used types, like

MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, etc.
• Also possible to specify user defined reduction

operations with MPI_Op_create()
• MPI_IN_PLACE specified for sendbuf at rank root,

makes the receive buffer a send-and-receive buffer

int MPI_Reduce(void *sendbuf, void *recvbuf, int count
MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm);

27

Broadcast

• Broadcasts a message from the process with rank
root to all other processes of the communicator

int MPI_Bcast(void *buffer, int count, MPI_Datatype
Datatype, int root, MPI_Comm comm);

28

Scatter and gather

• Routines to spread and collect data from or to root
• MPI_Scatter: if root sends 100 numbers to 10

processes, then sendbuf on root must be 1000 long
• MPI_Gather: if root receives 100 numbers from 10

processes, then recvbuf on root must be 1000 long

int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm);

int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm);

29

Allreduce, allgather and more

• MPI_Allreduce() and MPI_Allgather() are identical to
their siblings, except that the end result is made
available to all ranks

• As if the operation was followed by a broadcast

• There are also more elaborate combined all-to-all
scatter-gather functions, like MPI_Alltoall(),
MPI_Alltoallv() and MPI_Alltoallw()

• Use the man pages to get more information, e.g.:
$ man MPI_Allreduce

30

Examples

31

Writing Larger MPI Programs

• Question:
– Now that we can write “Hello World!” MPI programs,

then what do we need in order to write larger MPI
programs for scientific projects?

• Answer:
– Parallel algorithms
– Data must be distributed to all proceses so that they all

are kept busy during the entire execution of MPI
programs

32

Data Distribution

• The majority of time is usually spent in DO/FOR
loops

• Multiple data distribution methods:
– Block distribution

• Column wise
• Row wise
• In both dimensions

– Cyclic distribution
– Master-worker

• 6 examples

33

2. Finite Difference Method

• Wikipedia:
“Numerical methods for solving differential equations
by approximating them with difference equations”

• Only a skeleton 2D FDM program is shown here
• Coefficients and the enclosing loop are omitted
• Data dependencies exist in both dimensions

34

The Sequential Algorithm
PROGRAM main
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m=6, n=9)
DIMENSION a(m,n), b(m,n)
DO j=1, n
 DO i=1, m
 a(i,j) = i + 10.0 * j
 ENDDO
ENDDO
DO j=2, n-1
 DO i=2, m-1
 b(i,j) = a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j)
 ENDDO
ENDDO
END

35

Column-Wise Block Distribution

36

Column-Wise Block Distribution

• We must distribute a 2D matrix onto the processes

• Fortran stores arrays in column-major order

• Boundary elements between processes are
contiguous in memory

• There are no problems with using MPI_SEND and
MPI_RECV

37

Example 2

ex2/fdm1.f90

38

Row-Wise Block Distribution

39

Row-Wise Block Distribution

• Fortran stores arrays in column-major order

• Boundary elements between processes are not
contiguous in memory

• Boundary elements can be copied by:
– Using derived data types
– Writing code for packing data, sending/receiving it, and

then unpacking it

40

Example 2

ex2/fdm2.f90

41

Block Distribution in Both Dim. (1)

• The amount of data transferred might be minimized
– Depends upon the matrix size and the number of

processes

• A process grid itable is prepared for looking up
processes quickly

42

Block Distribution in Both Dim. (1)

43

44

Example 2

ex2/fdm3.f90

45

Block Distribution in Both Dim. (2)

• The corner elements are now included

• The data dependencies are therefore more complex

46

The Sequential Algorithm
PROGRAM main
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m=12, n=9)
DIMENSION a(m,n), b(m,n)
DO j=1, n
 DO i=1, m
 a(i,j) = i + 10.0 * j
 ENDDO
ENDDO
DO j=2, n-1
 DO i=2, m-1
 b(i,j) = a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j) + &
 a(i-1,j-1) + a(i+1,j-1) + a(i-1,j+1) +a(i+1,j+1)
 ENDDO
ENDDO
END

47

The Data Dependency

48

49

Example 2

ex2/fdm4.f90

50

3. Finite Element Method

• Wikipedia:
“Numerical technique for finding approximate solutions
to boundary value problems for partial differential
equations”

• A more complete example that produces a result

51

Finite Element Method

52

The Sequential Algorithm
PARAMETER(iemax=12, inmax=21)
REAL*8 ve(iemax), vn(inmax)
INTEGER index(4,iemax)
...
DO ie=1, iemax
 ve(ie) = ie * 10.0
ENDDO
DO in=1, inmax
 vn(in) = in * 100.0
ENDDO
DO itime=1, 10
 DO ie=1, iemax
 DO j=1, 4
 vn(index(j,ie)) =
vn(index(j,ie)) + ve(ie)
 ENDDO
 ENDDO

 DO in = 1, inmax
 vn(in) = vn(in) * 0.25
 ENDDO
 DO ie = 1, iemax
 DO j = 1, 4
 ve(ie) = ve(ie) + vn(index(j,ie))
 ENDDO
 ENDDO
 DO ie = 1, iemax
 ve(ie) = ve(ie) * 0.25
 ENDDO
ENDDO
PRINT *,’Result’,vn,ve

53

Distributing the Data

54

Differences from IBM version

• 2D enumeration (row, column) is used instead of 1D
enumeration

• The amount of memory allocated by each process is
minimized

• A node column is sent to the right

• An element column is sent to the left

55

Example 3

ex3/main.f90 and ex3/grid.f90

56

4. LU Factorization

• Wikipedia:
– “Factors a matrix as the product of a lower triangular

matrix and an upper triangular matrix”
– Used for solving square systems of linear equations:

Ax = b

• ScaLAPACK and Intel's MKL library have optimized
subroutines for this (outside the scope of this course)

• Pivoting and loop-unrolling is not considered

57

The Sequential Algorithm

PROGRAM main
PARAMETER (n = ...)
REAL a(n,n), b(n)
...
! LU factorization
DO k = 1, n-1
 DO i = k+1, n
 a(i,k) = a(i,k) / a(k,k)
 ENDDO
 DO j = k+1, n
 DO i = k+1, n
 a(i,j) = a(i,j)-a(i,k)*a(k,j)
 ENDDO
 ENDDO
ENDDO

! Forward elimination
DO i = 2, n
 DO j = 1, i - 1
 b(i) = b(i) - a(i,j)*b(j)
 ENDDO
ENDDO
! Backward substitution
DO i = n, 1, -1
 DO j = i + 1, n
 b(i) = b(i) - a(i,j)*b(j)
 ENDDO
 b(i) = b(i) / a(i,i)
ENDDO
...
END

58

Cyclic Data Distributing

59

60

Example 4

ex4/lu.f90

61

5. The Monte Carlo Method

• Wikipedia:
“A broad class of computational algorithms that rely on
repeated random sampling to obtain numerical results”

• A random walk in 2D
• 100,000 particles
• 10 steps

62

A Sample Trajectory

63

The Sequential Algorithm

PROGRAM main
PARAMETER (n=100000)
INTEGER itotal(0:9)
REAL seed
pi = 3.1415926
DO i = 0, 9
 itotal(i) = 0
ENDDO
seed = 0.5
CALL srand(seed)

DO i = 1, n
 x = 0.0
 y = 0.0
 DO istep = 1, 10
 angle = 2.0 * pi * rand()
 x = x + cos(angle)
 y = y + sin(angle)
 ENDDO
 itemp = sqrt(x**2 + y**2)
 itotal(itemp) = itotal(itemp) + 1
ENDDO
PRINT *,’total =’,itotal
END

64

Example 5

ex5/mc.f90

65

6. Molecular Dynamics

• Wikipedia:
“a computer simulation of physical movements of
atoms and molecules”

• N particles interact in 1 dimension
• The force on particle i from particle j is given by

f
ij
 = 1/(x

j
-x

i
)

• The law of action and reaction applies:
f
ij
 = -f

ji

66

Forces in 1D

67

Forces Acting on 7 Particles

68

The Sequential Algorithm
PARAMETER (n = ...)
REAL f(n), x(n)
...
DO itime = 1, 100
 DO i = 1, n
 f(i) = 0.0
 ENDDO
 DO i = 1, n-1
 DO j = i+1, n
 fij = 1.0 / (x(j)-x(i))
 f(i) = f(i) + fij
 f(j) = f(j) - fij
 ENDDO
 ENDDO
 DO i = 1, n
 x(i) = x(i) + f(i)
 ENDDO
ENDDO

69

Two Parallelisation Methods

• Most of the time is spent in the calculation loop:

• Two parallelization methods:
– Cyclic distribution of the outer loop
– Cyclic distribution of the inner loop

DO i = 1, n-1
 DO j = i+1, n
 fij = 1.0/(x(j) - x(i))
 f(i) = f(i) + fij
 f(j) = f(j) - fij
 ENDDO
ENDDO

70

71

Example 6

ex6/md1.f90

72

73

Example 6

ex6/md2.f90

74

7. MPMD Models

• Wikipedia:
“Multiple Program, Multiple Data: multiple autonomous
processors simultaneously operating at least 2
independent programs”

• Different programs run in parallel and communicate
with each other

75

An example

76

Master/Worker Programs

• The master coordinates the execution of all the other
processes

• The master has a list of jobs that must be processed

• Suitable if:
– The processing time varies greatly from job to job
– Neither block nor cyclic distribution gives a good load

balancing
– A heterogeneous environment where the performance

of the machines is not uniform

77

Example 7

ex7/master.f90 and ex7/worker.f90

78

More Information

• Examples are based on:
– IBM Redbook: “RS/6000 SP: Practical MPI

Programming”

• Documentation:
– https://www.sigma2.no/documentation
– http://www.hpc.ntnu.no/

https://www.sigma2.no/documentation
http://www.hpc.ntnu.no/

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

