
OpenMP Part 3. GPU

John Floan, HPC group, IT avd.
(john.floan@ntnu.no)

www.hpc.ntnu.no
www.openmp.org
www.nvidia.com

http://www.hpc.ntnu.no/
http://www.openmp.org/

2

OpenMP 4.5:
 All exercises are for GPU accelerators.
 (Note that; in the other OpenMP courses we using OpenMP 3.x)

There are two type of accelerators today:

- Intel Xeon Phi (MIC) processors with around 60 cores.
 (See more https://en.wikipedia.org/wiki/Xeon_Phi)

- GPU accelerators (100s to 1000s of cores).
 (See more http://www.nvidia.com/object/tesla-p100.html)

Accellerator is a device connected to PCI bus or NVLink Server
and with lot of cores.

In this course we shall only work with Nvidia Accelerator Tesla
P100

3

Figure 1. Intel Xeon Phi Multi Core device for PCI slot

Figure 2. Nvidia Tesla P100 device for PCI slot

4

Main Board PCI
GPU

Card(s)

CPU

GPU is connected to main board via PCI slot. Data and
code have to be sent and received via PCI bus.

5

Accelerator vs CPU

CPU has
-Small number of cores (2-20),
-High clock frequency
-Large cache memory.
-Low memory bandwidth
-Many registers (like AVX etc)

Accelerator GPU has:
-Many cores (or SMs; streaming multiprocessors) (>1000)
-High memory bandwidth,
-Low clock freqeuency
-Small shared cache memory.
-Have to use same code for all cores in teams.

An accelerator have to be off-loaded from the CPU to GPU, and move
data and code between main board and GPU device via PCI.

6

I compare CPU and Accelerator as to unload a container ship and drive
the cargo to a destination: Use few trucks or 1000s of mopeds.

Container ship
represent lot of
data (GB)

Few trucks (large cache)1000s of slow mopeds (small cache)

GPU CPU
VS

-CPU: Each truck can drive independently and in different route.
-GPU: All mopeds have to drive in teams of 32 in same route

7

CPU GPU

Cores 24 cores

 FP32 (single precision) - 3584 cores

 FP64 (double precision) - 1792 cores

Clock frequency 2.2 GHz 1126 MHz

Memory size (max) 1.54 TB 16 GB

Memory bandwidth 68 GB/s 732 GB/s

Power 135W 300W

Epic2:
-Intel CPU Broadwell Xeon E5 (E5-2650V4)
-Nvidia GPU Tesla P100 (PCI)

CPU / GPU specifications (Epic2)

8

More about Nvidia Tesla P100 Card with GP100 Processor :

GPC: Graphical Processing Cluster
TPC: Texture Processor Cluster
SM: Streaming Multiprocessor
WARP: Warp is set of 32 threads within a thread block that such that all

threads execute the same instruction.

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TPC

SM SM

TPC

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TPC

 Processor

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TPC

SM SM

TCP

SM SM

TCP

SM SM

TPC

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TCP

SM SM

TPC

SM: Streaming Multiprocessor

28 TPCs
56 SMs

SP Units: 2 X 32 cores, DP Units: 32 cores
SP: Single precision floating point, DP: Double precision

L1 Cache

For more details about Tesla P100.
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

9

Nvidia GP100 GPU has 60 SMs. GP100 Accelerator has 56 SMs

10

CPU vs GPU cores.

Core 1

CPU (intel)

L1

Core 2

L1

Core 3

L1

Core 21

L1
L2

Core 4

L1
L2

One L1 cashe (level 1) each core. Each core is independent of others.

SM1
32 cores

L1

SM2
32 cores

L1

SM3

L1

SM56

L1

GPU (P100)

L2

Each SM (streaming multiprocessors), of 32 cores, have one L1 cashe.
Each SM have to use same program (cores are dependent of 32 other).

L2

Core 22

L1

L3

11

TUTORIALS 1. DEVICE TARGET AND TEAMS

The GPU and MIC devices are connected to CPU main board via
PCI slot.

You have to move (offload) the instruction counter from the CPU to
GPU.

The directive for offloading GPU:

#pragma omp target //Default GPU 1

Specify device (GPU 1 or GPU 2)
#pragma omp target device (0) // GPU 1
#pragma omp target device (1) // GPU 2

The directive for offloading to MIC (Intel Xeon Phi)
#pragma offload target (mic)
#pragma offload target (mic:0) //MIC in PCI slot 0
#pragma offload target (mic:1) //MIC in PCI slot 1

12

Some runtime routins:

int omp_is_initial_device()

Returns true (1) if the current task is executing on the host device;
otherwise, it returns false (0).
You get this info from main board/CPU

int omp_get_num_devices()

Returns the number of target devices
You get this info from main board/CPU.

int omp_get_num_teams()

Returns the number of teams in the current teams region, or 1 if
called from outside of a teams region.
Need to inside GPU to check this.

13

Teams

#pragma omp target teams

Creates a league of thread teams where the master thread of each
team executes the region

Example: OpenMP with omp parallel for all cores and teams.

#pragma omp parallel

#pragma omp target teams

Blue arrow means the active thread;
the master thread

14

Data scoping for Accelerators.

Inside Accelerator (OpenMP host) teams, we have this data clauses
shared, private, firstprivate and reduction.

Default scoping for teams:

Arrays: shared

Loop variables: private, firstprivate

Variables: firstprivate (4.5)

15

Data scoping for Accelerators continue.....

Shared variables/arrays between CPU and GPU are more complicated.
We have to think about moving data between main bord and the accelerator.

Map data to GPU:

Read only: map(to:x,y,...)
Data will be copied to accelerator at start of target scoop

Write only: map(from:x,y,...)
Data will be copy from accelerator at end.

Read-write: map(tofrom:x,y,...)
Data will be copied to/from accelerator at start/end

Scratch: map(alloc:x,y,...)
Data will NOT be copied. Data must be initialized inside the accelerator.

16

Array sections

Array section is specified using : notation in map

Fortran:
start:end

C:
start:length

Example

Fortran
.... map(to:A(1:10) means: from element 1 to element 10

C:
.... map(to:A[0:10]) means: from element 0 to element 9

17

Example:

Standard c code:
int i;
int a=1;

a=a+1;

Targeting and teams:

int i;
int a=0;

//Target GPU and copy to/from device with a
#pragma omp target teams map(tofrom:a)
{
 a=1;
}

Fortran:

Integer::i
Integer::a

a=0

!$omp target teams map(tofrom:a)
 a=1;
!$omp end target teams

18

For debuging:

Update:
It is also possible to update variable from GPU to
CPU with:
Example (update cpu with variable a and print it out)

#pragma omp target update from(a)
printf("show a %d\n",a);

19

Job script:

#!/bin/bash
#
#SBATCH -J array1 # Sensible name for the job
#SBATCH -N 1 # Allocate 1 nodes for the job
#SBATCH -gres=gpu:2 # Select 2 GPUs
#SBATCH -t 00:10:00 # Upper time limit for the job
#SBATCH -p GPUQ # Select Epic2 nodes

#Loads module
module purge
module load fosscuda/2020b
./array1

Compiling:

gcc -O2 -fopenmp -foffload=nvptx-none -fcf-protection=none -foffload=-misa=sm_35
-fno-stack-protector-o array1 array1.c

20

Exercise 1. Test for checking if GPUs are connected and get number of
thread teams.

ssh -X training.hpc.ntnu.no

module load fosscuda/2020b (only once)

cd tutorials/OpenMP_GPU/

cd part1_target_teams
make
sbatch targeting_c.job
(_c for c code and _f for fortran)

Check the output.
cat slurm-xxxx.out

Change code in targeting.c to target the GPU and find number of teams
(more then 1 team).

21

Tutorial 2. Distribute teams.

#pragma omp target teams distribute

-----------------OMP teams distributed----------------------

C: #pragma omp target teams distribute
Fortran: !$omp target teams distribute

Specifies loops which are executed by the thread teams

Directive for Teams Distributed has to be used together with
for-loops.
-There are no parallelisme inside a thread teams.
-Iterations are distributed statically
-No garanti that the teams will execute simuntaneously
-Reduction of variables are also included: ... reduction(+:x)
Example
#pragma omp target teams distribute
for (i=1;i<n;i++)
 A[i] = i ;

22

Profiling:
After you are finished and get correct result you can check the program with a profiler.
Add in the job script with the profiler nvprof

nvprof ./array1_c (or _f)

DtoH means: Device to Host (GPU to Main board (CPU))
HtoD means: Host to Device

Run your code again.

23

Exercise 2. Teams distribute

a) Check running time for normal cpu code.
cd ../..
cd part2_teams_dist/cpu
make
sbach array1_c.job (or array1_f.job)

Check the running time.

b) Parallelize the code for teams distribute
cd ..
cd gpu
Change array.c with team distribute
make
sbatch array1_c.job (or array1_f.job)

Check the running time and compare with cpu job.

24

Tutorial 3. Parallelizing teams.

#pragma omp target teams distribute parallel for
These constructs specify a loop that can be executed in parallel by
multiple threads that are members of multiple teams.

#pragma omp target teams distribute parallel for
for (i=0;i<n;i++)
 A[i] = B[i];

It is also allowed to do this
#pragma omp target teams distribute
for (i=0;i<n;i++)
{

#pragma omp parallel for
 for (j=0;j<n;j++)
 A[i] += j * B[j];
}

#pragma omp target teams distribute parallel for

-----------OMP Teams distributed parallel for--------------

25

The streaming processors in a SM can only run the same code and with
different chunk of the data array, teamed in 32 CUDA Cores.

Example:

#pragma omp target teams distribute parallel for
for (i=0;i<32;i++)

A[i] = B[i];

Array A and B is stored into level 1 cashe.

The code runs as this
 CUDA core 1 calculate B[1] with A[1]

CUDA core 2 calculate B[2] with A[2]
 Etc

Fortran:
!$omp target teams distribute parallel do

26

Exercise 3: Optimize your code with teams distribute parallel for

Same place:
make
sbatch array1.job

27

Tutorial 3. Data region

Data region:
#pragma omp target data | Fortan: !$omp target data
Creates a device data environment for the extent of the region.

Target data keep the data to the accelerator (GPU)
Example: Update A on GPU

#pragma omp target data map(tofrom:A)
{
#pragma omp target teams distribute parallel for
for (i=0;i<n;i++)

A[i]=i;

....

}//End data region (fortran: !$omp end target data)

28

Exercise 3.
Increase n with one extra zero (9 zeros) in array1.c
Run sequential code

Optimize the array1 code in part2_teams_dist/cpu
and add data region into your program

Compare running time.

Exercise 4.
a) If you har finished with exercise 3 you can optimize
part3_team_dist
Compare running time for cpu and gpu.

b) Change arrays and tmp to type float (single precision)

29

FP32: Single Precision CUDA cores, FP64: Double Precision CUDA cores
Texture Units are for 3D geometry (4 each SM)

L1 cache 24kB

30

P100 vs V100

New on V100 is Tensor Cores.
Streaming Multiprocessors (SM)

P100
V100

31

Tensor Cores.

New Tensor Cores are for deliver required performance to train large neural
network.

Tesla V100 GPU contains 640 Tensor Cores.

Each Tensor Core operate on a 4x4 matrix and performs the following operation:

D = AxB + C , where AxB is a matrix mulitplication

See more here:
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

A B C

32

Neural network:

where I is input, W is weight, φ is the activation function and O is output.
Activation function (or transfer function) φ gives an output of 1 or 0 (or 1 or -1)
if the treshold Ɵ is reached.

I0

I1

I2

I3

Σ

Σ

Σ

Wj,i
O0

O1

O2

0j = φj (Σi,j Wi,j Ii)

This is same as matrix mulitplication:

Uj= Σi,j Wi,j Ii, , U = W x I and Oj = φ(Uj)

Threshold:

Uj = ΣWi,j Ii and Oj=φ(Uj)

Then the output Oj = {

1 if Uj ≥ θ
0 if Uj < θ

Input layer Output layer

φ

φ

φ

33

I0

I1

I2

I3

Σ
W0,0

W0,1

W0,2

W0,3

Example: Neural network with 4 input neurons and 1 output neuron and the
threshold is 2

O0φ

U0 = I0 · W0,0 + I1 · W0,1 + I2 · W0,2 + I3 · W0,3
= 0.7 · 1 + 1 · 0.5 + 0.1 · 1 + 1 · 1
= 0.7 + 0.5 + 0.1 + 1
= 2.3

Output:
O0 = 1 because threshold (Ɵ) is 2

1 if U0 ≥ 2
0 if U0 < 2 O0 = {

U0

Uj = ΣWi,j Ii

34

Artificial neural network

	Lysbilde 1
	Lysbilde 2
	Lysbilde 3
	Lysbilde 4
	Lysbilde 5
	Lysbilde 6
	Lysbilde 7
	Lysbilde 8
	Lysbilde 9
	Lysbilde 10
	Lysbilde 11
	Lysbilde 12
	Lysbilde 13
	Lysbilde 14
	Lysbilde 15
	Lysbilde 16
	Lysbilde 17
	Lysbilde 18
	Lysbilde 19
	Lysbilde 20
	Lysbilde 21
	Lysbilde 22
	Lysbilde 23
	Lysbilde 24
	Lysbilde 25
	Lysbilde 26
	Lysbilde 27
	Lysbilde 28
	Lysbilde 29
	Lysbilde 30
	Lysbilde 31
	Lysbilde 32
	Lysbilde 33
	Lysbilde 34

