

1

Introduction to Parallel Matlab Introduction to Parallel Matlab
(MDCS/Parallel Computing Toolbox)(MDCS/Parallel Computing Toolbox)

NTNU-IT HPC Section
John Floan

www.hpc.ntnu.no

Name, title of the presentation

2

Plan for the day
• Matlab multithreading functions and operators

• How to write faster code; basic examples

• Matlab vs Python operators

• Parallel Computing Toolbox and MDCS

• Introduction to parallel programming

• Tutorial 1. Parallel region (Intro, Hello world).

• Tutorial 2. Parallel loop

• Tutorial 3. Parallel region (Distributed arrays, Message passing).

• Tutorial 4. Implement C code to Matlab.

• Distributed Matlab using MPI

• Parallel R and Python

• Example with Deep Learing

All Matlab examples are done with Matlab R2016b, gcc/4.9.3 and cluster Maur

(Intel E5-2670 2.6GHz: 32 GB, 2 x 8cores processors each node)

3

Matlab support multithreading for number of functions
and operators.
 (see eg. http://www.mathworks.com/support/solutions/en/data/1-4PG4AN/?solution=1-4PG4AN)

List of some functions/operators:
Functions that speed up for double arrays > 20k elements
Trigonometric: ACOS(x), ACOSH(x), ASIN(x), ASINH(x),
ATAN(x), ATAND(x), ATANH(x), COS(x), COSH(x), SIN(x),
SINH(x), TAN(x), TANH(x)
Exponential: EXP(x), POW2(x), SQRT(x)
Operators: X*Y (Matrix Multiply), X^N (Matrix Power)
Reduction Operations : MAX and MIN (Three Input), PROD, SUM
Matrix Analysis: DET(X), RCOND(X), HESS(X), EXPM(X)
Linear Equations: INV(X), LSCOV(X,x), LINSOLVE(X,Y), A\b

4

How to write faster code
(See more here:http://www.ee.columbia.edu/~marios/matlab/Writing_Fast_MATLAB_Code.pdf)

1. Preallocation:
You will see better performance to preallocate all arrays
before using them as:
A) Not allocated array
N=100000000;
t=0;
for i=1:N
 A(i)=sin(t);
 t=t+0.01;
end
B) Preallocated array:
N=100000000;
t=0;
A=zeros(N,1);
for i=1:N
 A(i)=sin(t);
 t=t+0.01;
end

Run time on Maur: A) 10.3 sec B) 4.4 sec

http://www.ee.columbia.edu/~marios/matlab/Writing_Fast_MATLAB_Code.pdf

5

How to write faster code ...
2. Array iteration:
A) Row-wise iteration
A=rand(N,N);
avg1=0;
for ii=1:N
 for jj=1:N
 avg1=avg1+A(ii,jj)
 end
end

B) Column-wise iteration
A=rand(N,N);
avg1=0;
for jj=1:N
 for ii=1:N
 avg1=avg1+A(ii,jj)
 end
end

Run time on my laptop: N=20000 A) 17 sec B) 10 sec

ii

jj

In Matlab: Arrays are organized
cloumn-wise

6

How to write faster code code ...
3. Vectorization:

A) Standard code
t=0;
N=100000000;
A=zeros(N,1);
for i=1:N
 A(i)=sin(t);
 t=t+0.01;
end

B) Vectorization:
t=0:0.01:N/100;
A=sin(t);

Running time on Maur: A) 4.4 sec B) 0.7 sec

Note! You can also write e.g. A=sin(t)+cos(t);

7

How to write faster code code ...
4. meshgrid:

Meshgrid create a grid of nodes with X and Y values.
xstep=0.1; ystep=0.1;
Xmax=pi(); Xmin=-pi();
Ymax=pi(); Ymin=-pi();

[X,Y]=meshgrid(Xmin:xstep:Xmax,Ymin:ystep:Ymax);

% Creat Z value for each X and Y values.
Z=cos(X)+sin(Y);

Print out
surf(X,Y,Z);

- 4

- 3

- 2

- 1

0

1

2

3

4

- 4

- 3

- 2

- 1

0

1

2

3

4

- 2

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

2

X

Z

Y

8

How to write faster code code ...
4. meshgrid ...
Same code with for-loops:
%Standard for loop
Xstep=0.1; ystep=0.1;
Xmax=pi(); Xmin=-pi();
Ymax=pi(); Ymin=-pi();
xsteps=ceil((Xmax-Xmin)/xstep+xstep);
ysteps=ceil((Ymax-Ymin)/ystep+ystep);
xvalue=Xmin; yvalue=Ymin;
X=zeros(xsteps,ysteps);
Y=zeros(xsteps,ysteps);
Z=zeros(xsteps,ysteps);
for y=1:ysteps
 for x=1:xsteps
 X(x,y)=xvalue;
 end
 xvalue=xvalue+xstep;
end
for x=1:ysteps
 for y=1:xsteps
 Y(x,y)=yvalue;
 end
 yvalue=yvalue+ystep;
end
xvalue=Xmin; yvalue=Ymin;

for y=1:ysteps
 for x=1:xsteps
 Z(x,y)=cos(xvalue)+sin(yvalue);
 xvalue=xvalue+xstep;
 end
 yvalue=yvalue+ystep;
end

9

How to write faster code ...
4. meshgrid

Performance:
Input:
xstep=0.0005;
ystep=0.0005;
Xmax=pi();
Xmin=-pi();
Ymax=pi();
Ymin=-pi();

(Note! Do not use the surf(X,Y,Z) function with this inputs on your
computer. It will take all the memory)

Run time (on Maur):
For-loop: 14.9 sec
Meshgrid: 0.8 sec

10

Matlab vs Python operators
Numpy and scipy are python library for array and matrix
manipulation.

Numpy and scipy library increase the performance.

Both Matlab and numpy/scipy uses LAPACK librarys.

There are no license cost for numpy and scipy.

See:
https://www.hpc.ntnu.no/display/hpc/Python+Numpy+Scipy+a
nd+Odespy

See
Lapack: http://www.netlib.org/lapack/

11

Matrix multiplication
C=A*B (nxn)

Inv matrix
B=A\C

FFT

n 5000 10000 5000 10000 10000

Matlab
operator

2.4s 15.9s 2.2s 11.5s 0.25s

Matlab
for-loop

21 min 2h 38 min

Scipy
operator

13.3 s 1min 45s 28.2 s 218.4s 3.0s

Python
for-loop

30h 53min >10 days

C for-loop
(-O3)

1 min 38 s 16 min 43s

Matlab ver: R2016b (Maur),
Vilje: Python/Scipy (intel mkl): v.2.7.9, intel.comp v.15.0.1, mpt v.2.10

12

Parallel Matlab
PCT(Parallel Computing Toolbox) is a separate part of a Matlab
Client features and was available from version R2008a.

Distributed Matlab using MPI on Vilje (NTNU solution).
Programming Matlab using MPI
https://www.hpc.ntnu.no/pages/viewpage.action?pageId=15794234

13

Parallel computation

Serial computationInit Post proc1 2 p

A program can be split up to run on several processors that runs in parallel.
Sequential program:

t serial

Init Par. comp. 1

Par. comp. 2

Par. comp. 3

Par. comp. p Post proc

t parallel

Speedup
S = t serial / t parallel
(t-serial: Execution time for a single core/processor progam
t-parallel:Execution time for the multicore/multiprocessor program)

Speedup for p processors/cores:
S ≤ p.

14

Quad-core processor.

- Each core can run there own program block (thread),
 and simultaneously with the other cores.
- All cores share all the memory, and with fast memory access.
- All communication between the threads are via variables (shard memory).

Multicore shared memory processor.

15

i

j

Example: Matrix calculation.

B = c * A, where A and B is mxn matrices and c is a
 constant
Sequential computation:
All computation is carry out on only one processor or core.

Program
Init the matrix A
for i = 1 to m

for j = 1 to n
B(i,j) = c * A(i,j)

Benefits: OK for small computation, fast
memory access and none conflicts.
Drawback: Limited memory space (GB) and
sequential computations.

16

Node 1 Node 2

Node 3 Node 4

Parallel computation with Message Passing.
The matrix is split up and scattered to several
computers/nodes which are interconnected to each
other via IP, infinity band or other high performance
serial link.

Program:
Master: Initialize the matrix.
 Master split up and spread the
 matrix to all nodes.

For i = 1 to m_mynode
for j = 1 to n_mynode

myB(i,j) = f(t) myA(i,j)

Benefits: More memory space (TB) and parallel
computation on each node.
Drawback: Communication latency between the nodes.

17

Lab 1 in core 1

Lab 2 in core 2

Lab 3 in core 3

Lab 4 in core 4

j

i

Parallel computation and shared memory.
The matrix remains in the memory and each core/thread in the
processor compute its part of the matrix in parallel.

Program
 parfor i = 1 to m

B(i) = f(t) * A(i)

Benefits: Parallel computation and low communication latency
between the cores.
Drawback: Small memory space (GB) and memory conflicts.

Matlab use a combination of this two last methods (Hybrid)

18

Tutorial 1. Parallel region. Lab creation.

A parallel region is the part of the program where program is
spread in to several labs, cores and nodes. Before and after a
parallel region the program run on 1 lab (master lab). It is called
fork when the program go from 1 lab to parallel region and join
when the program go back to 1 lab.
Matlab: worker and lab is the same

Get lab information:
labindex:

– Get the lab index (ID); which lab call the labindex .
numlabs:

– Number of labs/threads

19

Example
......
% Create a parallel pool.
parpool ('local' , 2) % local configuration on your computer and 2 labs

% Old setting: matlabpool open local 2

% 1 thread (Master thread: labindex=1)
......
spmd % Fork to several labs (or cores) in parallel

do_something_in_parallel();

end % Join to 1 thread

%Close parallel pool
delete(gcp('nocreate'));

%Old: matlabpool close
....

20

Synchronization: Barrier.
Each thread/labs waits until all threads/labs arrive.

Example Barrier
spmd %parallel region

do_many_things_in_parallel();

//All threads wait here until all arrives.
labBarrier;

//All labs exchange its boundaries
exchange_boundaries();

//All threads wait here until all arrives.
labBarrier;
do_many_other_things_in_parallel();

end;

21

Exercise 1. Hello world.
Modify the sequential “Hello world” program in the file helloworld.m,
and print out number of labs and lab number like this:.

“Hello world from lab 1 of 4”

How to display text and number:
Ex.
x=1;y=2;
disp (['Text ' , num2str(x) , ' text ' , num2str(y)]);
Out: Text 1 text 2

22

Tutorial 2. Parallel for-loop and data sharing.Tutorial 2. Parallel for-loop and data sharing.
Matlab automatically split up the for loop to several threads and send a
copy of the block to each core with parfor. This construction is called
worksharing, and shall be initialize as this:

parfor i=1:n
 % do_someting_in_parallel
end

23

Example parfor: 4 labs and n=40
Matlab divide the for loop into chunks, and the chunk size is 10.

parfor ii=1:n
....

end

lab 1 lab 2 lab 3 lab 4
for ii=1 to 10 for ii=11 to 20 for ii=21 to 30 for ii=31 to 40

...
Note! It is important that the parallel for loop is iterational
independent. (This is not allowed A(i)=A(i-1));

That means; one iteration is independent of the iteration before.
Parallel loop iterations are not in sequential order.

(Example fibonacci.m)

24

Data sharing: Shared and Private variables
In Matlab you do not see which variables are shared and private,
but Matlab gives you a warning.
Shared
All variables declared outside a parallel region is shared inside the
parallel region and private when written to.

Private
Variables declared inside the parallel region is private.

Note! The parfor iterator (eg “i”) is set to private inside the parallel
region.

25

Example 1. Private.

 x=100; %x is shared variables between all cores/threads/labs
 parfor i=1:n

tmp =A(i); % tmp is a private variable inside the parfor
if tmp > 100
 B(i) = tmp - x;

 else
 B(i) = tmp;
 end
 end

You can not get the private variabel tmp outside the parallel region.

26

Tutorial 3. Reduction.

The matlab can reduce a shared variable inside a parallel for loop with
an operator.

Example Average

 n=100;
%Put random numbers into the vector v
v=rand(1,n);
ave=0;
parfor i=1 : n
 ave = ave + v(i);
end ;
ave = ave / n;

See ex_average.m

27

Other reduction operators:

+
-
* / .*
&
|

(See http://www.mathworks.com/help/toolbox/distcomp/brdqtjj-1.html#bq_of7_-3)

28

Exercise 2.

Calculation of П (3.14159265358979...).
To calculate pi we can use this formula

1
∫ 4/(1+x^2) dx = П

 o
Create a parallel version of the pi.m

Calculate the speedup S (Measure execution time before and
after parfor loop (tic and toc)).

29

Use of arrays (perfomance)

Exampel: Average of an 2D array:
 1. Standard for loop
 A=rand(n,n);
 avg1=0;
 for ii=1:n %or parfor
 for jj=1:n
 avg1=avg1+A(ii,jj);
 end
 end
 2. With tmpA array
 avg1=0;
 for ii=1:n %or parfor
 tmpA=A(ii,:);
 for jj=1:n
 avg1=avg1+tmpA(jj);
 end
 end

30

Use of arrays

Exampel: Average of an 2D array:
 Sequential:
 3. Switched index ii and jj
 A=rand(n,n);
 avg1=0;
 for jj=1:n %or parfor
 for ii=1:n
 avg1=avg1+A(ii,jj);
 end
 End
 4. One dim array
 A=rand(1,n*n);
 avg1=0;
 for ii=1:n*n %or parfor
 avg1=avg1+A(ii);
 end

31

Tutorial 4. Distributed Arrays
Matlab distribute an array between all labs, also
between nodes on a cluster.
Example:
Array size = 100, and number of labs are 4, the
partition is 24 elements each lab.
 A=ones(N,N);

A=distributed(A); %Set outside the parallel region
spmd %Parallel region

A=A*labindex
end

Codistributed array shall be set inside parallel
region.
Composite distribute objects to all labs
(See example ex_distr_array.m)

32

Message Passing
Matlab have several message passing functions as:

labSend

labReceive

labSendReceive

labBroadcast.

(See http://www.mathworks.com/help/toolbox/distcomp/f1-6010.html)

http://www.mathworks.com/help/toolbox/distcomp/f1-6010.html

33

Example labSendReceive (nonblocking function)

Syntax
data_received = labSendReceive(labTo, labFrom, data_sent)
data_received = labSendReceive(labTo, labFrom, data_sent, tag)

Arguments
data_sent

Data on the sending lab that is sent to the receiving lab; any MATLAB data
type.
data_received

Data accepted on the receiving lab.
labTo

labindex of the lab to which data is sent.
labFrom

labindex of the lab from which data is received.
tag

Nonnegative integer to identify data.

See ex_sendrec and ex_sendmatr

34

Implement C code to your Matlab program

Benefits for implement c code to your matlab code is faster
code.

How to do this:
1. Create a c file, for your c function, as myfunction.c.
2. Include “mex.h” in top of your program.
3. The c file must contain:
 Your function and the mexFunction.
4. Compile your code with: mex myfunction.c
 Matlab create a mexa64 file as myfunction.mexa64.
 5.Add your c code to your matlab code as
 >>out = myfunction (in1,in2,...,inN)
Example ex_mexfile

35

Mex function -interface between matlab and c-code

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])

 nrhs: Number of input parameters
 nlhs: Number of output parameters
 *prhs[]: pointer to input parameters
 *plhs[] pointer to output parameters

Get a parameter
double x = (double) mxGetScalar(prhs[0]);

Get a pointer (to an array)
 double *v = (double *) mxGetPr(prhs[0]);
Create a matrix for the return argument
 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

36

//Sequential
static void mysincos(long n, long m, double *y)
{
 double ly=0;
 long i,j;
 double Pi=3.141592653589793;

 for (i=1;i<=n;i++)
 for (j=1;j<=m;j++)
 ly=ly+cos((2*Pi*j)/m)*sin((2*Pi*j)/m);
 *y=ly;
 return;
}
//With OpenMP
static void mysincos(long n, long m, double *y)
{
 double ly=0;
 long i,j;
 double Pi=3.141592653589793;
 #pragma omp parallel for private(i,j) reduction(+:ly)
 for (i=1;i<=n;i++)
 for (j=1;j<=m;j++)
 ly=ly+cos((2*Pi*j)/m)*sin((2*Pi*j)/m);
 *y=ly;
 return;
}

37

Compiling with Openmp code

mex CC=gcc CFLAGS="\$CFLAGS -fopenmp" LDFLAGS="\
$LDFLAGS -fopenmp" mysincos_omp.c

Vilje and Idun:
R2016b: module load gcc/4.9.x

38

Matlab Matlab C
Cores (parfor) mex c openmp openmp (O2)

(sequential) 1 1 min 23 sec 28 sec 28 sec
8 11 sec 3.54 sec
16 5.4 sec 2.1 sec 2.0 sec

Compare time consumption for matlab, C, and matlab
with including mexfunction.
(see ex_mexfile.m)

Matlab R2016b , gcc v 4.9.1
n=m=30000;

	Lysbilde 1
	Lysbilde 2
	Lysbilde 3
	Lysbilde 4
	Lysbilde 5
	Lysbilde 6
	Lysbilde 7
	Lysbilde 8
	Lysbilde 9
	Lysbilde 10
	Lysbilde 11
	Lysbilde 12
	Lysbilde 13
	Lysbilde 14
	Lysbilde 15
	Lysbilde 16
	Lysbilde 17
	Lysbilde 18
	Lysbilde 19
	Lysbilde 20
	Lysbilde 21
	Lysbilde 22
	Lysbilde 23
	Lysbilde 24
	Lysbilde 25
	Lysbilde 26
	Lysbilde 27
	Lysbilde 28
	Lysbilde 29
	Lysbilde 30
	Lysbilde 31
	Lysbilde 32
	Lysbilde 33
	Lysbilde 34
	Lysbilde 35
	Lysbilde 36
	Lysbilde 37
	Lysbilde 38

